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XXXI. On the Theory of the Motion of Glaciers.
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Armost all the numerous discussions which have taken place during the last twenty
years respecting our theories of glacial motion have had for their object the assertion
of some particular view, rather than the establishment of a complete and sufficient
theory founded on well-defined hypotheses and unequivocal definitions, together with a
careful comparison of the results of accurate theoretical investigation with those of
direct observation. FEach of these views has been regarded, in my own opinion impro-
perly, as a Theory of Glacial Motion. The Expansion Theory ignored the Sliding Theory,
though they were capable of being combined ; the latter theory was equally ignored by
the Viscous Theory, in which, moreover, instead of the definitions of terms being clear and
determinate, no definition of wiscosity was ever given, though that term designated the
fundamental property on which the views advocated by this theory depended. Again,
the Regelation Theory is not properly a theory of the motion of glaciers, but a beautiful
demonstration of a property of ice, entirely new to us, on which certain peculiarities of
the motions of glaciers depend. 'When we shall have obtained a Theory of the Motion of
Glaciers which shall command the general assent of philosophers, no qualifying epithet
will be required for the word #heory; it would indeed be inappropriate, as seeming to
indicate the continued recognition of some rival theory. If, for instance, it should be
hereafter admitted that the sliding of a glacier over its bed and the property of regela-
tion in ice are equally necessary, and, when combined, perfectly sufficient to account
for the phenomena of glacial motion, there would be a manifest impropriety, not to say
injustice, in selecting either of the terms sliding or regelation by which to designate this
combined theory. I make these remarks because I believe that the preservation of the
partial epithets above mentioned has a tendency to prevent our regarding the whole sub-
ject in that more general and collective aspect under which it is one of the principal
objects of this paper to present it.

This object must necessarily give to the present paper something of the character of
a résumé of what has hitherto been done, whether it be our purpose to adopt or reject
the conclusions of others. There are periods in the history of almost every science when
its sound and healthy progress may almost as much demand the refutation of that
which is erroneous as the establishment of that which is true. I shall not, however,
enter into any review of the past labours of glacialists with respect to exploded theories,
but shall only notice those more recent researches and speculations which appear to
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678 MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS.

me either to demand refutation as erroneous, or admission into any well-founded theory
as correct. This treatment of the subject must necessarily lead to a certain repeti-
tion as to results already established, and be also of too critical a character, perhaps,
with reference to other results in which I may have no confidence. * I can only say that,
in the present state of glacial theory, such defects must be inherent in any attempt to
present it under a more complete and systematic form than it has hitherto, I think,
assumed. It is this circumstance, too, which I would especially offer as an apology for
the repetition of certain results which I obtained many years ago. Most of them are
abstract mathematical results. They are here obtained by a more general analysis of
the problem than that formerly employed, and are introduced as essential steps in the
development now offered of the theory of the motion of glaciers.

In the first section I shall endeavour to remove the ambiguities which have beset this
subject from the want of explicit definitions of certain terms expressing properties of ice
on which our theories of glacial motion must essentially depend.

In the second section I shall give a brief statement of the results of experiments
which explain the sliding of a mass of ice down a plane of small inclination, with a
slow and unaccelerated motion like that of an actual glacier.

In the next section certain propositions are investigated respecting the internal pres-
sures and tensions superinduced within a solid body by external forces which slightly
distort it, and produce a small relative displacement of its component particles, or what
may be termed a molecular displacement.

In the subsequent sections these results are applied to the explanation of crevasses,
and to an examination of the theories which have been proposed of the veined structure
of glacial ice.  Finally, I have shown the importance of the sliding motion in giving
efficiency to the internal pressures and tensions to dislocate the glacier, which thus
becomes relieved from its internal strain, regaining the continuity of its mass and structure
by its property of regelation so beautifully exhibited in Dr. TYNDALL’S experiment. '

SecrioN I.—Definitions and Explanations of Terms.

1. The external forms of all bodies in nature may be changed in a greater or less
degree, and without producing discontinuity in their mass or destruction of their internal
structure, by the action of any external forces, the original or undisturbed form from
which the change of form is to be estimated being that which the body would assume
if acted on by no external forces whatever. This change of form necessarily implies a
change in the relative positions of the component particles of the mass, or a certain
greater or smaller amount of molecular mobility, or power in the particles of moving
tnter se. 'We may speak either of the general change of the form of the whole body, or
of that which takes place in each of its small elementary portions; it is, in fact, in this
latter sense that we are obliged to regard it in any accurate investigations, because the
change of form for different elements will usually be different. Change of form in an
element may or may not be accompanied by a change of its volume. In the first case it
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leads to cubical extension or compression ; in the latter, merely to extension or compres-
sion of the surface and not the volume of the element, which may be called superficial
extension or compression. These changes of volume and form in any element must be
produced by the forces acting on it. Thus we may conceive linear extension alone pro-
duced at any interior point of the mass by two equal and opposite tensions acting on
two elementary component particles there in the direction of the line joining their
centres of gravity, while compression alone would result if those tensions were changed
into pressures. In such cases extension or compression would be the result of forces
which may be called direct or normal forces. In the case above mentioned, in which the
volume and density of every element of the mass remain unaltered, there can be no such
direct normal action as that just mentioned. The action must be perpendicular to the
normal, and must therefore be a ¢ransversal or tangential action. There would be no
tendency to make the contiguous particles approach to or recede from each other, but
to cause the one to slide tangentially past the other.

If the body have a structure like that of any hard vitreous or crystalline mass, pres-
sure at any point will tend to break or crush the body, and thus to destroy the conti-
nuity of its structure. This tendency will be opposed by the resisting power of the sub-
stance. The tendency of the direct or normal tension is to separate the contiguous
particles, and thus produce a finite fissure, or a discontinuity in the mass. It is resisted
by the normal cohesive power; and in like manner the transverse or tangential action is
resisted by the tangential cohesion, or that which prevents the component particles from
sliding past each other. Again, when the component particles at any point of a body
are relatively displaced, they have always a certain tendency to regain their originally
undisturbed position ; and the force thus excited, considered with reference to the force
of displacement at that point, affords a measure of what is called the elasticity of the
body. Since the force of restitution may vary from zero to the corresponding force of
displacement, the elasticity, when measured by their ratio, may vary from zero to unity.

2. We may now define such terms as solid, plastic, viscous, and the like, with all the .
accuracy which their definitions admit of. 'We may call a body emphatically a solid body
when it possesses the following properties:—(1) small extensibility and compressibility,
(2) great power of resistance and great cohesive power, both normal and tangential, and
(3) great elasticity. It will thus require a comparatively great force to produce any
sensible relative displacement among the constituent molecules of the body: if we con-
ceive the force required to become infinitely great, we arrive at absolute rigidity as the
limit of solidity. Again, we shall best, perhaps, define plasticity or wiscosity, if we
suppose the forces of displacement to be such as to produce only a small transverse or
tangential displacement of the constituent particles, 7. e. a superficial, not a cubieal,
extension or compression. Then, if the force of restitution bear only an inappreciable
ratio to the corresponding force of displacement, <. e. if the fangential elasticity be not
of sensible magnitude, the mass may be emphatically said to be plastic. This is the
essential condition of what may with strict propriety be termed plasticity ; it might alse
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be added that, as bodies are constituted in nature, the force required to produce the
original displacement in plastic bodies will be small as compared with that required in
solid bodies. Viscosity and semifluidity are terms which only express similar proper-
ties of bodies, but indicating that still smaller forces only are required to produce a
given displacement in viscous or semifluid bodies than in plastic ones. The limiting
case is that of perfect fluidity, in which both the forces of original displacement and
those of restitution are indefinitely small. In these latter cases the tangential cohesion
is necessarily small, and such also (as bodies are usually constituted)-will be the normal
cohesion. At the same time the power of resisting compression of volume may be very
great, as in fact it is in nearly all masses not technically designated as elastic masses.
In other words, the normal elasticity, with reference to pressure, may be of any magni-
tude, while the Zangential elasticity equals zero.

It will be observed that I have here spoken of a body as held in a state of constraint
by external forces, but without any kind of dislocation which should destroy its conti-
nuity or injure its structure. If, however, the external forces should be sufficiently
increased, the structure of a vitreous or crystalline mass, or that of any mass possessing
hardness and brittleness, will be destroyed by a pressure greater than its power of resist-
ance can withstand ; or the continuity of its mass will be destroyed by any normal tension
greater than the normal cohesion, or, again, by any tangential tension greater than the
tangential cohesion. The normal tension would then produce an open fissure; and the
tangential tension would cause one particle of the mass to slide past another, but without
producing any open discontinuity. On the contrary, in a properly plastic or viscous
mass there is no definite structure for excessive pressure to destroy; thereis no question
as to the formation of open fissures; and the characteristic absence of fangential elas-
ticity allows of any amount of change in the relative positions of the constituent particles
of the mass without breach of its continuity.

It would of course be impossible to draw an exact and determinate line of demarcation
between solidity and plasticity, but it is not therefore the less certain that there are
bodies which do unequivocally possess the property of solidity, and others which do as
unequivocally possess the property of plasticity, according to the definitions I have given
of these terms. Solidity and plasticity with respect to numerous cases in nature thus
become determinate properties of those aggregates of material particles which we call
bodies. Ice, a vitreous or crystalline and brittle mass, which will neither bear any but
the smallest extension without breaking, nor more than the smallest compression with-
out being crushed, must be solid, and cannot be plastic, if we are to use those terms as
significant of determinate properties of bodies.

3. The advocates of the Viscous Theory would not probably admit the necessity of the
above rigorous definition of the term wiscous in its application to glacial ice. But the
defect of that theory has always been in the entire want of any accurate definition of
that term. 'When such a definition was demanded, it was said that glacial ice must
be viscous, because a glacier adapted itself to the inequalities of its valley as a viscous
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mass would do. This was equivalent to saying that the mass was viscous because it
moved in a particular manner, instead of asserting that the mass moved in that parti-
cular manner because it was viscous. Now this kind of inversion of the direct enuncia-
tion of the proposition is only admissible when there is no other physical cause, than the
one assigned, to which it is conceivable that the observed phenomenon should be
ascribed. Thus we may assert with perfect conviction, that gravity exists as a property
of matter and acts according to a certain law, because the bodies of the solar system
move as if such were the case; but the conclusiveness of this inductive proof of the
proposition—that *gravity is a property of matter”—rests entirely on our conviction
that matter has no other property by which we could equally account for the phenomena
of the celestial motions. And so with regard to glaciers. If viscosity were the only
conceivable property of ice by which we could possibly account for the observed motion
of glaciers, then would the observed phenomena of that motion perfectly convince us of
the existence of the property in question. But here the two cases entirely differ,
inasmuch as there was no general conviction, nor even a decided probability at the time
I allude to, that no physical property of ice could exist besides viscosity which might
account for the observed phenomena of a glacier’s motion; and at the present time it is
proved that there ¢s another property of ice by which those phenomena are perfectly
accounted for, and the inductive proof of viscosity becomes altogether valueless.
Moreover, in the case of universal gravitation, the inductive proof is the only possible
one, whereas in glacial motion we are concerned with a property which, in whatever
sense the definition of it may be regarded, must be as capable of being rendered patent
by experiment in ice, if it exist, as in any other substance.

The answer, then, that was given to the question, what is viscosity? comprised no
definition at all of that term. The viscous theory ignored the possibility of the mole-
cular mobility of a glacial mass, united with the preservation of its continuity, being
attributable to any other property than that which was designated as wiscosity, but
without giving any exact definition of the term. If it was meant to define by it the
property which I have defined by the same term, the theory had a legitimate claim to
be considered a physical theory, because it assigned a determinate physical property as
the cause of certain observed phenomena. In this sense, however, I conceive that it
would now be admitted to be entirely disproved by Dr. TYNDALL’S experiments, in which
the ice exhibits so clearly the property of solidity, and the absence of all indication of
plasticity. The hypothesis of viscosity, I imagine, could only have been adopted in the
first instance from the apparent absence of any other property of ice which might
account equally well for the molecular mobility of the glacial mass.

4. But if the determinate property of viscosity, as I have defined it, be not recognized
in ice, what, it will be asked, is really the idea which has been attached to the term
plastic or viscous? The question, as I have already intimated, is difficult to answer.
Perhaps the best way of doing so is to refer to the *“Prefatory Note” to Principal
ForBEs’s ¢ Occasional Papers’ (p.xvi). He there intimates that the expressions ¢ bruising
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and re-attachment,” and “incipient fissures re-united by time and cohesion,” used by
him in 1846, are to be regarded as having the same meaning as the expression ¢ fracture
and regelation,” first introduced into the subject in 1857. Now there is no ambiguity
whatever in this latter expression. *Fracture” means the breaking and splitting of the
ice regarded as a brittle and crystalline soléd, and could never be intended to have the
slightest reference to viscosity. In fact the expression is altogether inapplicable to any.
body which can be called viscous, without what I should regard as a violation of scien-
tific language. Still this, it may be said, may be only a want of strict accuracy of expres-
sion, rather than of accuracy of conception. But if a notion of cracking and breaking, so
foreign to any idea of plasticity, should be admitted, it could not be said that a glacier
moved as it is observed to move because it was plastic, but merely that it moved as ¢f
it were plastic. The true inference from the motion would have been that glacial ice
possessed not necessarily real plasticity, a definite property of bodies, but a quasi-plasti-
city, which expresses no determinate property at all, but may consist with many different
properties. It merely expresses, in fact, the power of the component elements of the
mass of changing to a certain extent their relative positions. But this is not the pecu-
liar property of ice; it is common, indeed, to all bodies exposed to disruptive forces
which, as in the case of ice, the cohesive power is unable to withstand. The mass of
any other substance, as well as that of a glacier, will then be broken into fragments
sufficiently small to allow it to follow the impulses of the external forces acting on it.
To say, therefore, that a glacier moves as if it were plastic is not to assign to ice any
property peculiar to itself, and therefore does not properly constitute a physical theory
of glacial motion at all. ; . ,
5. But if we should pass over the difference between true plasticity and that which,
as we have pointed out, is merely apparent, there would still remain the great difficulty
which was only removed by the experiments of Mr. FARADAY and Dr. TynpaLL. Every
one who believed ice to be a solid body, believed as a matter of necessity that a glacier
must, on account of the external conditions to which it is subjected, be excessively broken
and dislocated in the course of its motion. I was myself one of those who fell into the
error of attributing too much influence to the larger and more visible disruptions of the
mass; but the great difficulty was in the perfect subsequent reunion of portions which
had thus been separated, whether by larger or smaller dislocations. And here it will
necessarily be asked whether, in the expression above quoted, * re-attachment” and the
“re-umion by time and cohesion” of separated portions when again brought into contact,
really mean the same thing as regelation? It can only be answered, I think, by saying
that, whatever might be the intended meaning of those expressions, they failed to convey.
to the minds of others the most remote idea of regelation as a property of ice at a
particular temperature. No better proof can be given of this than the general con-
viction which appeared to flash across the mind of every glacialist when he first heard
of Dr. TYNDALL’S experiment, that the recognition of the property of instantaneous
regelation was a well-marked and important discovery, which had at once completely
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removed a great stumbling-block in glacial theory. In fact, the viscous theory assigns
no physical cause for the reunion in question. All we could do, before the publication
of those experiments, was to infer from the observed facts that ice did possess some
property which facilitated the reunion of separate pieces in contact; but this was like
the attempt to define viscosity by an appeal to the phenomena which that property was
intended to explain.

6. An émperfect plasticity in ice has sometimes been spoken of. The fact is, all solid
bodies might be said to have an imperfect plasticity, if we chose to admit this vague-
ness in scientific language, since all are capable of greater or less extension or compres-
sion. As to the apparent plasticity inferred from the motion of glacial masses, and
arising from the crevicing of the ice, I have explained that it has no relation whatever
to real plasticity. Such crevices are the necessary consequences of the external forces
acting on the glacier, and are as essential to the theory of regelation as they are uncon-
nected with any property of plasticity.

I proceed, as proposed in my introductory remarks, to explain the sliding of glaciers.

SecrioN H.—'—Slidi%g Motion of Glaciers along the. bottoms of the Valleys containing them.

7. The sliding motion of glaciers, as first suggested by DE SAUSSURE, seemed to involve
some serious difficulties. The inclination of the surfaces along which some of the
Alpine glaciers descend is so small (not exceeding, perhaps, in some -cases 3° or 4°) as
to furnish one very obvious objection; and another was, that if glaciers did thus move
at all, it must be by an accelerated motion, whereas their real motion was an unac-
celerated one. Both these objections were founded on an entirely erroneous conception
of the nature of the forces called into action in the sliding of a glacier. They were
considered to be analogous to the force of friction in the ordinary case of a body sliding
down an inclined plane. But in this latter case the constitution of the sliding body, and
of that on the surface of which it slides, is always assumed to be such that the surfaces in
contact are not affected by the sliding movement, and then we have the experimental
law that the friction is independent of the velocity. Consequently the motion is an
accelerated one. But the condition just mentioned, respecting the surfaces in contact,
will not be satisfied in the case of a glacier, assuming what I shall prove shortly, that its
lower surface must necessarily have a temperature not lower than that of freezing, and
must consequently be always on the point of disintegration by thawing. Ice then
becomes very tender, and the cohesion of its particles at its lower surface becomes
insufficient to prevent the descent of a mass of such an enormous weight as that of a
glacier, even along planes of the smallest inclination. This was clearly illustrated by a
simple experiment which I made some years ago, which also fully explained the unacce-
lerated motion of a sliding glacier. The details of this experiment will be found in the
Cambridge Transactions for 1844 *. It constitutes so fundamental a step in this subject,
according to my own views of it, that I would beg permission to give here a brief descrip-
tion of it, and of the results to which it leads.

* They will also be found in the Philosophical Magazine:for January 1845.
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8. A mass of ice was placed on a flat rough slab of sandstone, so arranged that it
could easily be placed at any proposed inclination to the horizon. When the inclina-
tion was about 20°, the ice descended with an accelerated motion as in ordinary cases,
but at smaller inclinations it descended with a slow uniform motion, which, for inclina-
tions not exceeding 9° or 10°, was, cateris paribus, proportional to the inclination.
The velocity was increased by an éncreased weight of the mass, the area in contact with
the plane remaining the same. The motion was due to the melting of the ice in contact
with the slab, for when the temperature of the air became below that of freezing, it
entirely ceased.

The motion was sensible for inclinations little exceeding half a degree, and, doubtless,
would also have been so for smaller inclinations. This shows how small a force was
required to move the mass when its lower surface was in a state of disintegration. Let
f be a retarding force applied to a mass whose weight =W, placed on a plane whose
inclination is . Then will W sin s—f be the moving force along the plane; and since
the mass will require only the smallest force to move it, a force f very nearly equal to
W sin + will be necessary to hold the mass at rest. If f be removed, the ice will begin
to move with a moving force nearly = W sin s, the motion being permitted by the lique-
faction of successive indefinitely thin layers of ice, but then it will be retarded by the
solid mass coming in contact with the surface on which it slides. A melting of another
indefinitely thin layer will then take place, and the above process will be repeated, the
velocity increasing till the continuous action of the plane on the mass becomes equal to
the weight resolved in the direction of the plane. During this time (probably too short
to be estimated) the motion will be an accelerated one, but will thenceforward become
uniform, the action of the plane becoming equal to the resolved part of the weight along
it. The uniform velocity is, in fact, a ferminal velocity, similar to that of a stone
descending in water, when it soon approximates to a nearly uniform motion. The
action of the inclined plane on the moving mass, like that of the resistance of the water
on the stone, has this property—that, while it is incapable of exerting any but the
smallest force to hold the body absolutely at rest, it exerts a retarding force upon it in
uniform motion, equal to that of gravity. The objections above mentioned against the
sliding of glaciers have arisen from an entire misconception of this kind of mechanical
action. »

9. At the period when the preceding experiment was published, I was disposed to
think that the greater part of the observed motion of the surface of a glacier was due
to the general motion, by sliding, of the whole mass, while it was contended by other
glacialists that it was principally due to an excess of the velocity of the upper strata
of the mass over that of its lower strata, due to a gradual change of form of the whole
mass, and that there might in fact be no sliding movement at all. In recognizing that
both these causes might be vere cause*, 1 urged the necessity of deciding on their relative
claims by actual observations, which should determine the velocities of the upper and
lower surfaces of a glacier at some point where the lower one was accessible. Observa-

* Philosophical Magazine and Journal for February 1845.
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tions for this purpose were made by Principal ForpEs in 1846, at the bottom of the-
Glacier des Bois at Chamouni. He found that the velocity of a point on the surface,
at the height of 143 feet above the bed of the glacier, was to that of a point 8 feet above
the bed, in the ratio of nearly 16:10*, whence it follows that, if we divide the whole
velocity of the surface into eight parts, five of them will be due to the motion of the
bottom of the glacier, and three to that change of form of the mass by virtue of which
its higher move faster than its lower portions. Dr. TyNpALL has also made similar
observations on the flank of the Mer de Glacet, from which it appears that the motion
of the upper was there rather more than twice that of the lower surface. These obser-
vations may or may not determine approximately the average ratio between the velo-
cities of the upper and lower surfaces of a glacier; but they leave no doubt as to the
fact of the sliding movement. Again, it is observed that existing glacial valleys, and
those which are believed to have been such in former times, always indicate, by their
smoothed and striated rocks, the sliding movements of the glaciers they formerly con-
tained. In fact, few glacialists at present, I imagine, will doubt the existence of this
sliding motion, or that it forms a considerable portion of the whole motion of a glacier;
and I believe that the experiments above described afford an adequate explanation of
the cause and character of that motion. I insist on this more particularly because the
explanation has been singularly ignored and misunderstood. The non-applicability of
the experiments has been asserted, because the sliding mass was not obstructed in its
motion by lateral obstacles, like a glacier, whereas, in fact, they had no concern with
lateral obstacles, being merely intended to explain the action of the bed of the valley
on the superincumbent glacier. The irregularity of the sides introduces, as we shall see
very shortly, no difficulty or ambiguity into my views of the subject. - I may also state
that, several years after my experiments and his own observation above stated were pub-
lished, Principal ForBEs repeats his objection of the difficulty of conceiving the possibi-
lity of the motion of sliding glaciers being unaccelerated, whereas every one now acknow-
ledges that they do slide, and knows that their motion is unacceleratedf. M. Aaassiz,
on the contrary, after repeating the experiments, allows that the results remove the
great difficulties of admitting the sliding motion of glaciers§. This kind of motion, as
we htve seen, depends very much on the temperature of the lower surface of the glacier
being always equal to the freezing-temperature. That such must always be the case I
proceed to show. All observations indicate that it is so; but still, since few direct
observations can be made on this point, it may be well to show that it follows from
the temperature of the earth, and the nature and conductivity of ice, that the tempera-
ture of the lower surface of a glacier must be that above mentioned.

*# Occasional Papers, p. 175. ' t Glaciers of the Alps, p. 289.

1 “The main objection, however, is this, that a sliding motion of the kind supposed, if it commence must
be accelerated by gravity, and the glacier must slide from its bed in an avalanche. The small slope of most
glacier-valleys, and the extreme irregularity of their bounding walls, are also great objections to the hypo-
thesis.””—Occasional Papers; also published in 1855 in the ‘ Encyclopedia Britannica.’

§ Systéeme Glaciaire, p. 568.
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10. Interior Temperature of Glaciers.—There are two obvious causes by which the
temperature in the interior of a glacier may be affected—(1) conduction of heat from
the superficies of the mass according to the ordinary laws of conduction through solid
bodies, and (2) infiltration of water from the upper surface. 'We may consider sepa-
rately the operation of these causes, with the view of determining whether the lower sur-
face of the mass is permanently at the temperature of freezing, as it must be to render
the preceding experiments strictly applicable to account for the continuous and unaccele-
rated motion of the glacier. To investigate the effect of the first cause, let us conceive
the whole surface of the earth covered with a superficial crust of ice. The temperature
of this crust will be subject to periodical annual variations to a certain depth, which
will depend on the annual variations of the superficial layer of the icy crust, and the
conductivity of the ice. It may be considered, for our immediate purpose, sensibly
the same as the temperature of the glacier itself, at all points where the glacier and
our imaginary crust of ice coincide. Now the surperficial changes of temperature in the
crust of ice subject to conditions similar to those of a glacier, would be much less than
those which the actual rocky crust of the earth experiences; for the temperature
of the ice could never rise above 32° Fahr. in the hottest summer, nor in the coldest
winter could it probably fall many degrees below that temperature, on account of the
covering of snow like that which on all glaciers protects their outer surface against the
effect of low winter temperature. Again, the depth through which these oscillations
of temperature would be perceptible, would, cwteris paribus, be comparatively small if
the conductive power of the mass should be so. I am not aware of any experimental
determination of the value of this power for ice; but that substance is known to be a
very bad conductor, and probably worse than the average of the rocks which form
the outer crust of the earth. For both these reasons, then, the depth of oscillatory
annual temperature would be much smaller than it is found to be within the actual
crust of the globe, under the same external climatal conditions. Now in the earth’s
crust, and in our own latitudes, this depth may be approximately estimated at 70
or 80 feet, according to the nature of the upper strata. I should therefore deem it
probable that the variations of external temperature in a crust of ice like that above
supposed, or therefore in an ordinary glacier, would not exceed at most perhaps some
30 feet.

Again, let us consider the probable mean annual superficial temperature of our hypo-
thetical icy crust, or of a glacier of ordinary dimensions. The actual temperature could
never rise, as above remarked, above 82° Fahr., and would never sink many degrees
below that temperature. M. Acassiz has left us the only reliable observations on this
subject*. He buried a self-registering thermometer in the glacier of the Aar, at the
depth of 21 metres. It was taken up two years afterwards, and was found to have
registered a minimum temperature of —2°1 (C.) =28%22 (Fahr.). Thus the mean
temperature for the winter was probably not less than 30° (Fahr.), and that for the

* Systéme Glaciaire, p. 425.
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whole year might perhaps not much fall short of 31°(Fahr.)*. If the conductive power of
ice were equal to that of the earth’s crust, the mean temperature would increase 1° (Fahr.)
in descending some 60 or 70 feet; and therefore, on account of the smaller conductivity
of ice, it would probably, in the case of a glacier, rise to 32° (Fahr.) at a depth of some
30 or 40 feet. This would hold, it should be observed, on the supposition that the sub-
stance below this depth should be capable, like the matter of the earth’s crust, of taking
any temperature higher than 32° (Fahr.). This higher temperature would be acquired,
as in the actual case of the earth, by the flow of heat from the earth’s interior. But in
the case of a glacier this heat will be expended in melting the lower stratum of ice instead
of communicating a higher temperature to the whole mass. Consequently, if the thick-
ness of the glacier exceed some 30 or 40 feet (a depth at which, as above shown, the tem-
perature will be invariable), the temperature of the lower surface will be constant and
equal to 32° (Fahr.).

The temperature at any proposed point (P) of the interior of a glacier, at a depth
greater than that estimated above at some 30 or 40 feet, will always be constant and
less than 32° (Fahr.), provided the mean annual temperature of the external surface of
the glacier be so. To find this constant temperature at P, take for the temperature of
the upper surface its mean annual temperature. Let it =T° (Fahr.). Also let a=thick-
ness of the glacier, x=distance, from the upper surface, of the proposed point, and ¢ its
required temperature. Then shall we have, according to the laws of conduction of heat,

Bl S

32°—T°"" @’
the difference of temperatures, as-is well known, being approximately proportional to
the distances from the upper surface. Hence :

t=T°42 (32°—T°),

which shows that ¢ must always be greater than T°; it must also be less than 32° (Fahr.),
and must therefore lie between those quantities. Consequently, since 32°—T°is small
for the Alpine glaciers, their internal temperature must be nearly uniform, but always
a little below 32° (Fahr.), supposing it to depend only on the process of conduction.

But the process of infiltration will tend to raise the internal temperature more nearly
to 32° Fahr. ; for since the infiltrated water will have that temperature, it will constantly
tend to heighten the temperature of the mass through which it passes till it rise to
82° (Fahr.), and never to lower it. This water must thus bring to the glacier (a mass
of lower temperature than itself) a continual accession of heat, which it can only lose
again by conduction through the upper surface during the winter; and this loss will be
restricted to that small depth beyond which the annual variations of temperature cannot

extend. For all points at greater depth infiltration must ultimately raise the tempera-
ture to 32° (Fahr.).

* M. Aaassiz states that the temperature given by his experiment might possibly be somewhat too high.
There is no probability, however, that the error would be sufficient to affect the reasoning in the text.

582
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Hence, then, considering the combined operation of conduction and infiltration, it
appears that, to the depth of perhaps 30 feet, the interior temperature of a glacier
will be 82° (Fahr.) during the summer portion of the year, but will be rather lower than
32° (Fahr.) during the winter. For all deeper parts of the glacier it will be invariably
equal to 32° (Fahr.).

These results are in exact accordance with the careful observations made by M. Aassiz,
which have already been partially referred to. Besides the winter observations above
mentioned, he also observed the temperatures in the month of July, at depths of from
3 to 5 metres, at 30, and at 60 metres. These temperatures were all exactly 32° (Fahr.)
during the fortnight they were observed, with the exception of one or two very small
and manifestly accidental variations in the more superficial observations.

11. Tt follows from the preceding articles that the temperature at the lower surface
must always be the freezing-temperature, ¢. e. the ice there must be in that state in
which the mutual cohesion of its constituent particles is less than in any other state. It
does not follow that the glacier would not slide if the temperature of its lower surface
were less than 32° (Fahr.); but that temperature is the most favourable for the motion
of the glacier, because the most favourable to the disintegration of its lower surface, and
the immediate conversion of the ice which forms it into water. It should be remem-
bered, too, that it was one of the results of my experiment, that, ceteris paribus, the
motion was increased by increasing the weight of the mass; ¢. ¢., the cohesive power of
the ice at the bottom of the glacier will be the more rapidly overcome by increasing
the depth of the mass, the area of its base being unchanged. Consequently the tendency
of a glacier to descend down its bed would be indefinitely greater, cwteris paribus, than
that of our experimental lump of ice down its plane. It is this enormously increased
tendency that enables the mass of a glacier to overcome the resistance arising from the
inequalities of the sides and bottom of its valley. We shall explain in the sequel the
prodigious force which may thus be exerted, and the corresponding internal tensions
which would thus be produced by it. These tensions overcome the cohesion of the
mass, the ice breaks, and the glacier obtains more freedom of motion than it could have
in its state of greater compactness and continuity. The tendency to the sliding motion we
are considering will manifestly be greater in the axial than in the marginal parts of the
mass. It is there, especially, that the depth must be the greatest, and the distance from
opposing lateral objects is likewise greatest; and, it may be added, the subglacial cur-
rents, by which the sliding will undoubtedly be more or less facilitated, will be generally
greatest along the central parts of the valley. »

Hence, then, it follows that, so far as the motion of a glacier depends on the sliding we
have been considering, the velocity of its axial portions will generally be considerably
greater than that of its marginal portions. This constitutes the most distinctive and
important character of the observed motion of a glacier.

Still, though the sliding motion was perfectly consistent with this observed general
character of glacial motion, it was not sufficient to account for several striking pheno-
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mena attendant upon it. The formation of crevasses was a necessary consequence of the
forces acting on the glacier, and the conditions to which it was subjected ; but no reason
was thus assigned why such crevasses should be obliterated again, as they were frequently
observed to be, and the continuity of the mass perfectly restored. Moreover, it became
evident from more accurate and detailed observation, that the continuity of many parts
of the general mass was preserved in a degree apparently inconsistent with the change
of form to which a mass so crystalline and brittle as glacial ice did manifestly submit.
It was to meet this difficulty that Principal ForBEs was led to the hypothesis of the
viscosity or plasticity of glacial ice. I have already explained my objection to the vague-
ness with which these terms appear to me to have been used, and to the total want
of all experimental proof of any property in ice which could be so designated with accu-
racy, or with a due regard to the propriety of scientific language. Difficulties of this
kind always remained on the minds of certain glacialists, till the experiments of
Mr. Farapay and Dr. TyNDALL at once explained to us that regelation, and not viscosity,
was the real property of ice required for the completion of our general theory of glacial
motion. This property of regelation belongs essentially to solid bodies, and in treating
glacial masses as bodies possessing the property of regelation, we must necessarily treat
them as solid. As such 1 consider them in the following investigations, the object of
which is to ascertain, as far as we are able, the internal pressures and tensions to which
glaciers are subjected, and the phenomena which may result from them, more especially
those connected with the veined structure of glacial ice, and the formation of cre-
vasses.

12, Before I proceed to these investigations, I would here remark that the import-
ance of a distinct conception of the properties indicated by the terms viscosity or plasti-
city on the one hand, and solidity on the other, will be at once apparent if we consider
the difference between the mechanical problems presented to us in the motion of glaciers,
according as we conceive them to be typified by a viscous or solid mass. In the first
case we have to determine the continuous motion of a mass the component particles of
‘which move with different velocities, but without destroying its continuity. The most
simple, and the limiting case, would be that in which the tangential action of conti-
guous particles on each other should vanish. The mass would then become a fluid mass.
But even in this case we can do little by accurate mathematical investigation, and still
less in the case in which the mass is viscous. Consequently, the objection against any
attempt at a mathematical solution of the problem of glacial motion, founded on our igno-
rance of the motions of viscous masses, is perfectly valid, so long as we treat glacial ice
as viscous according to our definition of that term. But this same objection has been
urged against all attempts to apply accurate mathematical processes to the problem, in its
complete or partial solution, under the supposition of ice having the property of solidity.
The complete solution of the problem would undoubtedly be far more difficult for a
solid than for a viscous mass; for it would involve conditions depending on innumerable
discontinuities in the mass, resulting from its motion. All that can be attempted is a
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partial solution of the problem, in which the dynamical difficulties are evaded. It has
been already explained that when a solid body is acted on by external forces, it generally
becomes distorted in form and changed in volume. If the forces be insufficient to over-
come the cohesion of the mass and to dislocate it, they will of course continue to main-
tain the body in its state of constraint and distortion, and thus to produce, at different
points of its interior, pressures and tensions varying both in direction and intensity.
The immediate object of the first part of the investigations contained in the following
pages, is the proof of certain propositions respecting these internal pressures and ten-
sions, and the phenomena resulting from them. The problem thus considered is not a
dynamical, but a statical one, in which certain results are attainable with the same accu-
racy as in the simplest mechanical problems; and such are the only results with which
we are directly concerned in our present researches. If the distorting forces be suffi-
ciently increased, the mass will be torn or crushed, as already stated, and will then
move according to the new conditions imposed upon it in its state of dislocation. This
constitutes the dynamical part of the problem, but, it must be recollected, it does not
enter at all into the mathematical part of our own investigations. I have thought it
necessary to point out this distinction, lest any vague objection resting on an imperfect
or erroneous conception of the problem before us should exercise an undue influence on
the mind of the reader.

SecrioN II1.—On the Pressures and Tensions at any point of o Solid Mass held in a -
position of constraint by external forces. :

13. ' We may now proceed to the consideration of the general problem, the object of
which is to investigate the nature of the internal pressures and tensions at any proposed
point of a solid mass subjected to the action of impressed forces which slightly distort
it from the form it would assume when acted on by no external forces at all. It will be
recollected that these forces are supposed insufficient to destroy the continuity of the
mass. They maintain it in its distorted form, and must therefore be in equilibrium with
the internal forces arising from the cohesive power of the mass.

To explain the nature of the distortion produced in any small element of the mass,
let us denote by s the area of an indefinitely small plane surface passing through any
point (P). Generally there will be an action between the particles (M) on one side of
our small plane, and those (M) on the opposite side. Since s is indefinitely small, we
may represent by f the whole action of M on M/, and suppose its direction to make an
angle  with the normal to the plane s. Then will

S cosdand fsin 3
be the normal and tangential actions respectively of M on M'; and

—f cos & and —f sin &

will be the corresponding actions of M' on M.  If the normal force be a pressure, it will
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only tend to preserve the particles on opposite sides of s in contact, but if it be a fension,
it will tend to separate those particles by motions parallel to the normal. Also the
tangential forces f sin 8 and —f sin 8 will always tend to separate two particles on oppo-
site sides of s and in contact, by making them move in opposite directions parallel to
the plane. If we conceive s to revolve about P as a fixed point, and thus to assume all
possible angular positions, the forces f cos 8 and f sin 8 will vary with the angular posi-
tion of the plane, in certain positions of which they will assume their maximum and
minimum values. The determination of these positions is one immediate object of the
problem, with the view of determining the effect of the distorting forces on the form of
each element of the mass, and thence, if the problem were completely soluble, the dis-
tortion of the whole mass. But before proceeding further, we may explain more
explicitly what will be the kind of distortion to which every element of any solid body
will be subjected under the action of distorting forces. Let us take a small rectangular
parallelopiped as the element of the body while unconstrained by such forces. The
normal forces acting on opposite sides of the element will manifestly form three pairs of
equal * and opposite forces, each force of each pair acting in a direction opposite to the
other force of that same pair, and thus producing compression or extension of the
element according to the directions in which they act. Again, it is manifest, from what
has been said respecting the small plane s, that the tangential force onany one side of
the elementary parallelopiped will be equal to that on the opposite side, but will act in
the opposite direction, thus tending to fwist the element from its original rectangular
form into an oblique-angled parallelopiped. Hence the primitive undistorted element
will be compressed or extended according to circumstances, and will always (unless the
forces acting on it be entirely normal) be twisted so as to destroy its rectangularity. In
the final application of the results obtained from this our typical problem, we shall have
to deduce the manner in which the continuity of the glacial mass will be destroyed
when the power of resistance of the ice is no longer sufficient to equilibrate the distort-
ing forces acting on it, and also to consider the phenomena which may result from such
breach of continuity.

With respect to the solution of our abstract problem, I have little to add to that
which I gave in the Transactions of the Cambridge Philosophical Society for the year
1847, and I might be content merely to refer to that solution for the results. In doing
so, however, it would be necessary to give a somewhat complicated notation, and certain
explanations in such detail that the space thus occupied would not differ materially from
that required for the mathematical analysis of the first part of the general problem. By
giving this analysis here, considerable trouble of reference will be avoided. 1 would
request permission, therefore, to repeat a part of what appeared in the Transactions
above referred to. The quotation includes the following articles, from the 14th to the
17th inclusive :—

* Omitting small quantities of a certain order, which it is not necessary in this general explanation to
take into account.
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14. «“Taking any point (P) of the mass, let it be made the origin of coordinates zyz.
Let the small plane s be conceived as above to pass through P, and let the forces upon

it when in the positions specified below be denoted as follows, all being referred to a unit
of surface. ’

“(1) When a perpendicular to the plane coincides with the axis of @, let

B’ parallel to y,
c o, 2.

“(2) When a perpendicular to the plane coincides with the axis of y, let

The normal force =A ; the tangential force ={

C" parallel to 2,
A, w

¢(3) When a perpendicular to the plane coincides with the axis of z, let

The normal force =B; the tangential force ={

A" parallel to «,
B . y.

“ Between the six accented quantities there are three essential relations, which are
easily found. On the three coordinate axes at P, construct an indefinitely small paral-
lelopiped whose edges are dz, 9y, 82. The six equations of equilibrium of this element
will express the conditions that the sums of all the resolved parts of the forces parallel
to the coordinate axes shall respectively be equal to zero; and that the moments of the
forces with reference to these axes shall also severally be equal to zero. Let us take
the three latter conditions, lines through the centre of gravity of the element and parallel
to the coordinate axes being taken for the axes of the component couples. The tangen-

tial force parallel to the axis of & on the side 0.8z being A', that on the opposite side

The normal force =C; the tangential force ={

. !
will be — <A’ —|—%-8}/> ; and the couple resulting from these forces about the axis

parallel to z, will be . ” .
Aldadz. —%+ (A’—l— &y By) dadz .—Qy—;
or, omitting small terms of the fourth order,
Aldadydz.
« Similarly, the couple arising from the forces B' and B’+%§ oz about the same axis
parallel to z, will be
— Bloadysz.
« Also the moments of the normal forces A, B, C, with reference to the above-mentioned

axes, will be zero, always omitting small quantities of the fourth order. Consequently
the whole moment of the forces on the parallelopiped with reference to the axis parallel
to that of z, will be

(A'—B')dadydz,
which must = zero by the conditions of equilibrium ; and therefore

A'=DB.
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In exactly the same way we find, by taking the moments with reference to the axes
parallel respectively to those of  and a,

A!I — C/ ,
BII — CII .

By means of these three relations the six accented quantities are reduced to three inde-
pendent quantities. '

15. ¢ Let us now conceive a plane to meet the three coordinate planes so as to form
with them a tetrahedron, whose vertex is at the origin P.  Suppose the exterior normals
to the three faces formed by the coordinate planes to point respectively towards the
positive directions of &, g, and z; and let @, 3, ¥ be the angles which the normal to
the base of the tetrahedron makes with the coordinate axes of &, 9, z.  Also, let s denote
the area of the base, and ¢, s", s the areas of thesides of the tetrahedron perpendicular
respectively to the axes of , 9, 2, all these quantities being indefinitely small.

¢« Again, let ps denote the whole resultant force on s, and let A, @, » be the angles
which its direction makes with lines parallel to the axes a, y, z, this direction being
exterior to the tetrahedron. Then in order that the tetrahedron may be in equilibrium,
we must have

ps.cosh=As +A's"+ A",
. s. COS{b=BSI’ +B's' 4+ Bs",
ps.cosy =Cs"4-C¢ 4+ C's";
but

.S‘,_ S" -S‘"’
S=cose, —= cos 3, < =cosy;

making these substitutions, and also putting

B'=C"=D,
A"=(C'=E,
Al =B'=F,

we shall have
p.cosh=A cosa+F cos 3+E cos v, ‘
p.cosp=BcosB+Fcose+Dcosy,: . -~ . . . . . (a),
p.cosy =Ccosy+Ecosa+D cos B, '

formulee in which the notation agrees with that of M. CavcnHy *.

16. « If 3 denote the angle between the direction of p and the normal to s, we shall
have p‘. cosd for the whole normal force acting on the area s in a direction exterior to
the tetrahedron, and p.sind the whole fangential force acting on the same area. Our
first object will be to determine «, 3, and y, or the position of the base s of the tetra-
hedron, so that the normal action upon it, pcosd, shall be a maximum. We shall
afterwards have a similar investigation with reference to the tangential force p . sin .

# Exercices de Mathématiques, vol. ii. p. 48.
MDCCCLXII. 5c¢
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“ We have ,
€08 & = €os A €os & - cos w cos 3+ cos v cos v,

whence we immediately obtain

p cos 0=A cos’ &+ B cos’34C cos® y 42D cos Bcos y+2E cos @ cos y+2F cos e cos 3; (1.)
and since

cos’e 4 cos’B +cos’y=1, . . . . . . . . . . (2)
we have (L being an arbitrary multiplier),

(A4L) cos’e+(B+L) cos® B+(C+L) cos® y+2D cos 3 cos y+2F cos « cos

+2F cos « cos B=max.
Hence

{(A4+L) cos o +E cos y +F cos B} sin ¢ =0, :
{(B+L)cosB+Dcosy +Fcose}sinf=0,0 . . . . . . . (0)
{(C+L)cosy+Dcos B+ Ecose} siny=0.

“ To satisfy these equations together with (2.), we must equate the first brackets to
zero. We thus have four equations from which L may be eliminated, and «, 3, and y
determined.

“ If we multiply the first factors on the left-hand sides of equations (.) by cos «,
cos (3, cos y respectively, and add them together, we have, by virtue of equations (a.),

L=—pcos?;
and substituting for L in equations (4.), we have

p cosdcos e=A cos «+F cos B+ E cos y
=pcCoSA
by the first of equations (a.); and therefore
COS D COS &= COS A,

and similarly 5 c0s B
: €os d cos 3= cos ,

COS 3 COS y== COS ¥,
whence
cos’ d=1
0=0,
which shows that when the resultant force p is a maximum or minimum, its direction
coincides with that of the normal to the plane s. Consequently, also, the tangential
force, p sin 9, then becomes = zero. ’

« This value of  gives L=—p; and substituting for L in equations (4.), we have
(A—p)cos x+F cos B+E cos y=0,
F cos e~ (B—p) cos B4+D cos y=0, e e s (e)
Ecosa+D cos B4 (C—p) cos y=0; '
and eliminating cos @, cos'3, and cos ¥ by cross multiplication, we obtain
(A—p)(B—p)(C—p)—D*(A—p)—F(B—p)—F(C—p)+2DEF=0. . . (3.
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« If we take the three values of p deducible from this equation, and substitute them
successively in equations (c.), those equations combined with (2.) will give three distinct
systems of values for cos a, cos 8, and cos v, belonging (as is well known) to three lines
perpendicular to each other.

17. « Hence it follows that there is at every point (P) of a continuous solid mass

.under extension or compression, a system of three rectangular axes, such that if the small
plane s at P be so placed that its normal shall coincide with one of those axes, the whole
resultant action on s shall be normal to it, the tangential action upon it being then equal
to zero. These three axes are called the awes of principal pressure or tension with refer-
ence to the point P.

¢« Of the three values of p in these directions, though they all satisfy the conditions of
maximum or minimum, one is a maximum, another a minimum, and the third is neither
an absolute maximum nor an absolute minimum. This is best explained, perhaps, by
converting equation (1.), as CAUCHY has done, into an equation to a surface of the second
order, by putting .

P cos 8:;5, 7 coS =&, 7T CcOSB3=y, 7 COSy=2.

The inverse of the square of any radius vector will be a measure of the normal action
through P perpendicular to this radius vector, the axes of this surface of the second
order coinciding with the axes of principal tension or pressure. Of the three principal
axes of this surface, the directions of the greatest and least will manifestly coincide with

‘those of minimum and maximum tension ; but though the tension in the direction of the

: . . . d. d. )
mean axis of the above surface satisfies the two conditions £ d::‘os =0 and pd/c;os =0,

it satisfies the one because it is maximum with respect to «, and a minimum with respect
to B, or the converse, as the mean axis of an ellipsoid is a maximum in one principal
section of the surface, and a minimum in the other.”

18. The object of the second part of this investigation* is to determine the angular
positions of the small plane (s) passing through P, so that the tangential force acting
upon it shall be greatest, 4. e. that psind may be a maximum. Our formule will be
much simplified by taking the axes of prmmpal tension or pressure as the coordinate
axes. In this case we shall have

D=0, E=0, F=0;

and if A,, B,, C, now represent the principal tensions at the propbsed point, and «,, B8,, ¥,
be the values of , 3, y referred to these new axes, equations («.) will give

Pp*=A? cos’,+ B; cos’ 8,4 C: cos’y,,
and equation (1.) gives :
p . cosd=A, cos’a,+B, cos’3,4C, cos’y,.

# A solution of the problem above investigated was also given by M. CAvcHY, in his ‘Exercices de
Mathématiques® (vol. ii. p. 48). The solution of the problem in this second part of the investigation has
only been given, I believe, by myself.

bc2
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Hence we have (if p sind=T)
T?=p?sin® 0=A} cos® &, +B; cos® 8,4+ C} cos® y,— (A, cos® a,+ B, cos® 3,+C, cos® v, )2,
which is to be a maximum subject to the condition

cos’ o, +cos® 3, +cos’y,=1.

The solution of this problem is longer and more complicated than that of the problem
solved in the first part of the investigation. It will here be sufficient for my purpose
to state the results, and, for the analytical solution, to refer the reader to the volume of
the Cambridge Transactions above quoted. The results are as follows:—

e, B, and 7, being the angles which define the position of the small plane s (art. 13),
the analytical conditions for the tangential force (T, or psind) upon it being a maxi-
mum or minimum, are satisfied by the following three systems of contemporaneous
values :— o o

1) =90, Bi=y,=145,
(2) B=90, yy=u,=445¢: . . . . . . . (d)
(3) %=90, a=p==45;

and if T,, T,, and T, be the values of T corresponding respectively to these systems of
values of ,, 8,, and y,, we have

T=iB,-0), T=iA—-C), T=1A—B)

If A,, B,, C, be taken, as they always may be, in order of magnitude, T, will mani-
festly be the greatest of these values of T. It is in fact, as shown in the memoir
referred to, the only value which satisfies all the conditions of a maximum. The corre-
sponding values of @, 31, and y,, which determine the corresponding position of the
plane s, are those given by the second system of (d.). Now @, is the angle between the
normal to s and the axis of y; and since it is here =90° the normal to s must lie in
the plane of 2z, and the plane s itself must pass through the axis of . Moreover,
since the corresponding values of «, and y, are each 4-45° this plane may have two
positions, in both of which it bisects the angle between the coordinate planes of zy and
Yz, these positions being on opposite sides of the plane of 2. These considerations,
however, only determine the position of the plane in which the maximum tangential
force (T,) acts; they do not determine the linear direction of the force in that plane.
It is easily shown that it is perpendicular to the axis of y*. Since we have here D=0,
E=0, and F=0 (art. 15), we have from equations (a.),

pcosh =A, cosa,
p cos =D, cos 3,
pcosy =C, cos g,
p being the whole resultant force on the small plane s, referred to a unit of surface, and

# No proof of this is given in my memoir above referred to in the Cambridge Transactions.
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A, w, v being the angles which its direction makes with our present coordinate axes of
z, 9, z respectively. Hence

Pt =Ajcos? a,+B;] cos’ 3,4-C, cos’ y,,

08 A= A, cosa,
T V/A?cos?a; + B2 cos? B, + C2cos®y,
B, cos
COS = 1005y

v A2 cos? a; + B2 cos? B, + C2 cos® P

C,cosy,
vV AZcos?a, + B2 cos? 3, + Cicos®

COoSy =

But 8,=90° in the case before us, and therefore w must =90° 4. e. the direction of
the whole resultant force (p) on the small plane s must be perpendicular to the axis of
9, and must lie in the plane of #z. Thus, the
plane of the paper representing that of @z (fig. 1),
the direction Op in that plane may represent the
direction of p; and if Om bisect the angle be-
tween the coordinate axes # and z, that line will
be the trace of a plane on &z coinciding with the
plane of s, and therefore perpendicular to that of
az. Consequently, if we resolve the whole force | x
p normally and tangentially with reference to the ‘
plane s, the tangential part will evidently coin-
cide with Om. But, from the particular values “an

of a,, 3,, and y,, this tangential force must neces- v

sarily be the maximum tangential forceT,. Con-

sequently, if we call the axis of y the awis of mean principal tension or pressure, the
direction of the maximum tangential force (T,) will be perpendicular to this mean axis,
and will bisect the angle between the other two axes of principal tension.

19. Hence, in our first problem, the equations (2.) and (¢.) determine a, 3, 7, and p.
The cubic for finding p, which is deduced from them, shows that there are three values
of that quantity, the three principal tensions, whose directions are defined by corre-
sponding values of «, 3, and y, and which are at right angles to each other. These
quantities being known, the value of T,, the maximum tangential force at the proposed
point, and the direction in which it acts, are immediately determinable from the results
of the second part of the problem as given above. To do this we must first determine
the three systems of values of «, 3, and ¥ which have been denoted by «,, 3,, and y,, and
which determine the positions of the axes of principal tension; and also the values of
the three principal tensions which have been above denoted by A,, B,, and C,. For the
greater simplicity we then take these axes of principal tension for those of #, y, and z.
If A,, B,, and C, be in order of algebraical magnitude, the axis of y will be the mean
axis. If A, be a pressure and therefore negative, the proper order will be B, C,, —A,,

Tig. 1.

z
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and the axis of z will become the mean axis. Other cases must be treated in a similar
manner, always preserving the order of algebraical magnitudes for determining the
mean axis. The line of greatest tangential action is always perpendicular to it, and
bisects the angle between the other two axes of maximum and minimum tension. In
determining the magnitude T,, we must take the same precaution, in arranging the
principal pressures in their proper order of magnitude, to determine which are alge-
braically the greatest and least. Thus in the above case, where the order is B,, C,, —A,,
we have T,=%(B,+A,). We may remark that the sign of T, is of no importance in any
application we are contemplating of these formulz.

20. Solution to @ First Approximation.—The complete solution of the preceding equa-
tions cannot be generally obtained. For their practical application they must be solved
by approximation, when the approximate solution may be sufficient. The most import-
ant case is one in which the problem can be completely solved in consequence of its
simplification arising from the particular conditions assumed. The case is that in which
we suppose no forces to act at any point parallel to one of the coordinate axes, as that
of z. In such case C=0. Also we assume the absence of any couple tending to twist a
proposed element about the axis of #, or that of 9, ¢. e. D=0, and E=0. Hence the
equations (¢.) (art. 16) become

(A—p)cos e-+F cos 3=0,
Fceosa+(B—p)cosPB=0,¢ . . . . . . . . (c)
( —p)eosy=0;
and the cubic for the determination of p becomes
+{(A=p)(B—p)F}p=0.
This last equation gives for the value of p,
=$#{A+Bt+/(A—-By+4F},
p=0.
Or putting (A—B)*+4F*=M?,
p=3{A+B+M},
p=3{A+B-—-M},t . . . . . . . .. (d)
P:=0.
For the values p, and p, of p, the third of the above equations (¢.) gives cos y=0;
and the equation
cos® w4 cos? B4-cos’ y=1

gives
cos B=sina;

and eliminating p and @8 from the two first of equations (¢'.), we obtain

2F '
tan2a=m-............(e’.)
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This corresponds to two values of « differing by 90°. These two values of «, and y=90°
(since cos y=0), determine the two positions of the axes of the principal tensions p, and
ps-  They both lie in the plane of zy.
Taking the third value of p==p,=0, the equations (¢.) are also satisfied by
cose=0, cosB=0;
by which the equation
cos® ¢-}-cos’ B4-cos* y=1
is reduced to
: cosy=-+1.

These values of , 3, and y correspond to the axis of z, showing that axis along which
the pressure =0 to be the third axis of principal tension.

21. In determining the magnitude and direction of T,, the greatest tangential action,
we must bear in mind the remarks in art. 19. The quantities denoted in the preceding
formulee by p,, ps, p, are the same as those denoted in art. 18 by A,, B,, C,. The former
are here retained for greater distinctness. If A-4B be >M, p, will be positive, and the
order of the principal tensions will be p,, p,, p;. The axis of ¥ will then be the mean
axis, and the direction of the maximum tangential action, T,, will bisect the angle
between the other principal axes of # and z. Also we shall have

T,=4(p:—ps) ,
CaAtBRMy (")

If, on the contrary, A+B be {M, p. will be negative, and the order of the principal
tensions will be p,, p;, p,. The direction of T, will be perpendicular to the axis of z,
bisecting the angle between the principal axes of # and y. Also we shall have

T=3(p—p)|

!
M J(g)
These two cases hold when
M<or>A+4B
respectively, or :
(A=B)+4F<or> (A+B)”,1 .
F <or> AB; [ (%)

or the second case may hold when A and B are both tensions, or both pressures, pro-
vided one of them be small; and it must necessarily hold when one is a pressure and
the other a tension.

22. Solution of the General Equations to a Second Approximation—In proceeding to
second approximation I include C and E, but regard their magnitudes as small. These
magnitudes must be expressed by the ratios which they bear to some standard force.
The greatest value which the tangential force F can attain in any glacier must be limited
by the tangential cohesive power of glacial ice; for if F exceeded this latter force, dislo-
cation, by a tangential sliding of one element past another, would instantly ensue. Let
this tangential cohesion be measured by F,; then, when it is said that C and E are small,
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it is meant that the ratios ]?—, and - are small ratios. Thisis equivalent to the assuming
1 1

that the force on any element parallel to the axis of z is small, and that the couple
with reference to an axis parallel to that of g, is also small. The condition D=0 signi-
fies, as in the first approximation, the absence of a couple on every element, with refer-
ence to an axis parallel to that of «.

Hence putting D=0 in our general cubic, we have

(A=p)(B=p)(C—p)—1 (B—p)—F(C—p)=0,

{(A—p)(B—p)—F*}(C—p)=E(B—p). |
Putting C=0 and E=0, we have, as before, for the three first approximate values of p,

=3 A4+B4+/(A=By+4F7),

or

p2=—;-{A+B—\/(_AT——B)2—+4—FE}, e e e e (d)
p,=C.
To proceed to a second approximation, put
p=p+w=,

in the cubic, and we obtain
{(A—p,—@)(B—p,—=,)—F}C—p,—w,)=(B—p,—=,)F,

{(A=p))(B—p)) = F—(A—pi+B—p))m 4o} (C—p,—=)=(B—p,—=)F"
The first approximation gives
(A—p)(B—p,)—F=0;
and the preceding equation shows that =, must be of the order E>. We may therefore
neglect terms in =, E?, and =}, and we then obtain

—(A+B—2p,)(C—p,)w,=(B—p,)E?,

_ »n—B E2
=T A+ B—2, p,—C’

or

and

w

or, since C is small, s e . ,
=i 7 ()P
@, and =, may be found in the same manner.
23. Again, equations (¢.), art. 16, become, if D=0,
(A—p) cos x+F cos B+E cos y=0,
F cos e+ (B—p) cos 3=0, N (48

E cos ¢+ (C—p) cos y=0,
The two last equations give
cos o= — (—JE;p cos v,

F C—p
COSﬁ:B_——[: — CosYy.
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If we were to substitute these expressions in the first equation, we should obtain the
cubic in p used in the immediately preceding articles for the approximate determination
of its value. Substituting the values of cos « and cos 3 in the equation

cos® o + cos® 3 + cos®y=1,

{(5) + (o) (557) +feosr=r

we obtain

or
F

{(10-—0)2 (1+ (-I;:—E-)—Q> +E2} cos? y=F2,
The retention of E? in the coefficient of cos®y would only produce a term in the expres-
sion for cos?y of the order E, and may therefore be neglected. Also, since p only dif-
fers from its first approximate value, p,, by a small quantity of the order E? we may,
for the reason just assigned, write p, for p in the last equation. Thus we have

E
cosy=+ R
(P—C)A/ 1+( B)
. . ‘pl—
and by substitution,

| cos 3= r .

“p—B F '

. \/1 + (T!“B>2

1
cos u:\/._._—_F_?
1+ (—
(Pl_B>

These equations show that y is changed from a right angle to one whose difference from
a right angle is of the order E, and therefore small; while cos« and cos 3 are changed
by small quantities of the same order as the difference between p and p,, 7. e. of the
order F2

24. Nature of the Forces A, B, C, D, E, and F in the ordinary cases of Glaciers.—In
the preceding investigations we have considered the forces A, B, C, D, E and F as
acting on any element of a solid body. In the case of a glacier, this body assumes a
specific form, and it becomes necessary to explain what forces are represented by the
above symbols in this particular and restricted case. The phenomena with which we
shall be here concerned, have been observed almost entirely in those regions of glaciers
in which most large ones, like those of the Alps, become much elongated in consequence
of the narrowness of the valleys down which they descend. The sides of these valleys
frequently approximate to parallelism with each other. The primary general charac-
teristics of the motion of glaciers of this kind are (1) the motion is unaccelerated,
(2) the axial portions move with a greater velocity than the marginal portions, and
(3) the superficial portions move somewhat faster than the lower portions of the mass.
These points are clearly established by observation, independently of any particular

theory. In the following articles of this section their truth is assumed.
MDCCCLXIL. 9D
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25. Let fig. 2 represent the section of a glacier by a plane parallel to its surface, and
fig. 3 a vertical section through A & the axis of the glacier. Let Az be taken as the

Fig. 2.
—_— Q@ Q :
X\ t
A / N JC
) ’ J x| ’
7 P N L €
7
7] o 7 & s

R R
Section parallel to the surface.

axis of #, and the surface of the glacier (nearly horizontal) as the plane of a7, a trans-
verse line perpendicular to A & being the axis of 7, and a perpendicular to the surface
of the glacier the axis of z. Let Q' R’ (fig. 2) represent a section, by a plane parallel to
that of &y, of an element of the mass lying between two planes perpendicular to the axis
of ; Q' R/, by the more rapid motion of the axial parts of the mass, will be brought into
the position QR. Also if Q R’ (fig. 3) represent a section of the same element by a
vertical plane parallel to that of 2z, Q' R' will be brought into the position QR by the
more rapid motion of the upper surface of the mass. Also the small elementary paral-
lelopiped whose section parallel to (2y) is represented by P' ¢'#' s in fig. 2, will be brought
into the position P ¢ 7 s, while the section P'g's's' (fig. 3) of the same element made by a

7/ Is7 7\// ]\9
rR r
Vertical section.

plane parallel to (2z) will be brought to the position Pg#s. Thus we see that there
will be an angular distortion of P ¢ r s about an axis parallel to z, as represented in fig. 2,
and a similar distortion about an axis parallel to y, as represented in fig. 3. These
angular distortions are respectively due to the couples whose intensities are represented
by F and E (art. 15). Also it is easily seen that there will be no twisting or angular
distortion of P ¢7 s about an axis parallel to that of #, and that consequently D will =0
in all such glaciers as we are now considering. A becomes a longitudinal tension, and
B a transversal one. C will be the pressure on the element parallel to 2z, and due to the
superincumbent weight, and the inclination of the surface of the glacier to the horizon.

26. The intensity of A and B will depend much on the form of the glacial valley. If
the sides be parallel, A may be a tension or pressure according to the local variations in
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the form of the bed of the valley; B will be small. If the sides be convergent in descend-
ing the valley, A will almost necessarily be a pressure, on account of the resistance
which the sides will oppose, by their convergency, to the onward progress of the glacier.
B will become a great pressure, greater than A, to which it will bear somewhat the
same relation as the pressure on the side of a wedge bears to that applied to its back. If
the valley be divergent, and if when it becomes so, its inclination is very much dimi-
nished (as at the lower end of the Rhone glacier) A may become an enormous pressure,
while B may become a tension on account of the lateral expansion which will be given
to the mass by the great pressure & fergo. C will be best considered in conjunction with
E. D, as above stated, will always =0. F will have different values for different points
in the same vertical transverse section of the glacier. It will manifestly be greatest in
the marginal portions, where the angular distortion represented in fig. 2 is greatest; in
the central portions, the motion of the glacier will produce very little of this angular
distortion about an axis parallel to that of #z, and F will be proportionally small.

27. The forces C and E are more de- Fig. 4.
pendent on each other than A, B, and F. R
I proceed to investigate expressions for .. D e T
them. For this purpose let fig. 4 repre- \—M\“‘““‘\&x

sent a vertical section of the glacier paral-
lel to (22) and not too remote from its
axis; then will F, as above stated, be very
small, and may be neglected. Also D=0,
and Bacts perpendicular to the plane(2z),
and will therefore not affect the relations
between the forces acting parallel to that plane.

Let , g, 2 be the coordinates of the point Q. We shall have NM =g, the distance
of the plane NM Q from that of 2z=y, and MQ=2. We might obtain the results
required by considering the conditions of equilibrium of the element dx3y0z, represented
by Q¢#S; but it will be more convenient to take an element represented by M Q g m, of
which the volume will be z02dy. I suppose here the existence of a longitudinal pressure
parallel to the axis of #, and represented in our general formul® by A. If we draw a
plane through M Q perpendicular to the axis of #, A may represent the intensity of the
longitudinal pressure at any point on that plane, referred to a unit of surface. For
different points in this plane # will be constant, and the pressure may vary generally
with # and z; but it will answer our immediate purpose, and much simplify our pro-
blem, if we suppose A constant for every point in M Q, or independent of  and z. It
will then vary only in passing from any plane M Q to a consecutive and parallel plane,
i. e. A will be a function « alone. Hence we shall have

Pressure on one of the sides of the Plement M ¢ perpendicular to the plane of yz=A .23y,
Pressure on the opposite side = ( + Bx) 20y.
9D 2
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The algebraical sum of these pressures, estimated in the positive direction of z,
=— % 20:9y.
Again, if W be the weight of a unit of volume of ice,
Weight of the element Mg="W 2029y,
and its resolved part parallel to the axis of &
=Wazdady sin s.
Also we shall have the tangential force on the base Qg,

= —Eday,
parallel to the axis of .

Hence we must have for a condition of equilibrium of the element Mg

O Wesini—E=0,
and
E= (—%—I-W sin :)z.

It would seem probable that A will generally vary slowly with y; it may vary more
rapidly with 2, especially in cases where it becomes large, as at the bottom of an ice-
fall. In such case we shall have

2dA
A=\ 5 dg
{ i %

where { is taken parallel to z. In the position just mentioned (the foot of an ice-fall)

the variation with regard to # may possibly be rapid, and therefore %‘% very considerable.

Under the ordinary conditions of a glacier, away from any rapid fall, the variations of

A must generally be slow, and the values of % therefore comparatively small.

C is manifestly due to the resolved part of the pressure of Mg on the surface Qg
referred to a unit of surface. The normal pressure on Qg=W.z023y coss. Whence

C=Wzcoss

This value of C shows that it must always be small when 2 is so. Such will also be
the case with E, unless % be very large, which is probably true only at the foot of an

ice-fall. Generally, then, we see that C and E will be small for all those depths which
lie within the sphere of our observation; and that for all such depths the first approxi-
mate solutions of our general equations are sufficiently accurate. The second approxi-
mate solutions give the results for greater depths, and indicate the nature of the results
for those still greater depths at which C and E might be too large to render the results
of the second approximation applicable with sufficient exactness. '
‘We may now distinctly understand the interpretation of the first approximate solu-
tions of our general equations, as applied to the case of an actual glacier. In those
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solutions it has been assumed that C, D, and E are so small as to be neglected. D always
=0, and it follows from the preceding expressions for C and E that, generally, they are
relatively small for all those more superficial portions of a glacier to which our observa-
tions can extend. Hence, for the same portions, our first solutions will be approxi-
mately true and practically applicable.

SecrioN IV.—On the manner in which Dislocations in the Mass of a Glacier, or in its
Structure, may be produced ; and on the resulting Phenomena.

28. Tt will be recollected that the internal pressures and tensions which have been
investigated in the preceding pages, are those which would exist in a continuous solid
mass acted on by certain external forces, previous to the dislocation which must result
from such forces if the intensity of the internal tensions should be sufficient to over-
come the cohesion of the mass, or the pressures to overcome its resisting-power. We
may, however, carry our geometrical and mechanical analysis of the problem somewhat
further, and consider how the dislocation will take place when the forces are sufficient
to produce it. It has already been remarked (art. 2) that there are three ways in
which this may occur. In the first place, the cohesion may give way to the greatest
normal tension, p,; open fissures will then be formed. Again, when the maximum
compression (p,) becomes very great, it may be easily conceived how the primitive
structure may break down, as it were, especially if the mass be of a crystalline structure
like ice. The third kind of dislocation is that produced by the tangential action between
two contiguous elements, which obviously tends to make one element slide past the
other, and thus to produce what Principal ForBES has called a ¢ differential motion.” I
shall consider successively these different kinds of dislocation, and the phenomena which
respectively result from them, with reference, in the first place, to the more superficial
portions of the glacier, in which our first approximate formule are applicable; and
secondly, the possible formation of similar phenomena in the deeper parts of the glacial
mass.

From the equations (&'.), art. 20, we have

2,.=5A+B++/(A—By+4F},

2,=HA+B—/(A—By+4F},
2F
tan 20&:;{":]‘3-

The last equation gives two values («, and «,) of @, which determine the directions ‘of
p, and p, with respect to the axis of the glacier. A, B, C, and F, in the application of
the formule to an actual canal-shaped glacier, are such as described in arts. 25 and 26.
We have also the result that the lines of maximum tangential action at any point bisect
the right angles between the directions of maximum tension and maximum pressure.

Of the values «, and «, of «, one will be greater and the other less than 90°; and we
must determine, in each problem, which gives the maximum and which the minimum
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pressure p, and p,. It may be convenient to consider F an absolute positive quantity ;
and we may suppose, for such a glacier as that represented in fig. 2, that B=0. Insuch
case the preceding formula shows that one of the values (as «,) of « must be small and
positive when F is small, ¢. e. for any point P (fig. 2) near the axis A2. Now the
maximum tension at P must be due to the tension A parallel to A 2, and that produced
by the angular distortion of the element P ¢rs. The magnitude and direction of this
latter tension are obtained by putting A=0 and B=0 in the above formule. This
gives the greatest tension =F, the least =—F, and tan 20=co , or therefore «=45° or
136°  From the inspection of the element, it is manifest that the first of these values of
e« corresponds to the greatest tension produced by the angular distortion. It is from
this tension and A that p, in the actual case of a glacier before us, must result. Con-
sequently p, must act in some such direction as P ¢ (fig. 2), where « in that figure is
acute. The same result will hold if B be of finite magnitude, and algebraically less than
A ; and thus «, and «, are distinguished from each other in the case before us, and by
similar reasoning may be distinguished in any other case.

29. Formation of Transverse Crevasses.—When the maximum normal tension is the
force to which the cohesive power of a glacial mass first gives way, the result, as above
observed, must be an open fissure, or crevasse, the direction of which must manifestly
be perpendicular to that of the tension producing it. These crevasses approximate more
or less to right angles with the glacial axis, and usually characterize canal-shaped valleys
in which the sides are approximately parallel. In such cases B must be comparatively
small ; if the valley be slightly convergent, it will be a small pressure, and therefore
negative. When these crevasses exist more abundantly, A will doubtless be a large
tension, though not necessarily so, as we shall see, for the production of a crevasse.

(1) Taking the simplest case, let us first suppose A=0 and B=0. This may be very
approximately true if the glacier descend without acceleration or retardation along a
trough-like valley of uniform width and uniform inclination. We shall then have by
the above equations, p,=F, p,=—F, and tan 20= o. Hence the direction of maxi-
mum tension will make an angle «=45° with the axis of the glacier (A ) (fig. 2) towards
which it will converge in descending. If, therefore, a fissure be formed at all, which can
only be in the marginal regions where F is considerable, it must be in a direction per-
pendicular to P ¢, and making an angle of 45° with the axis of the glacier. 'We have
also for the maximum tangential action (art. 21),

T,=3(p,—p:)=F,
equal, in this case, to p,, and making an angle of 45° with the directions of p, and p,. It
will therefore be parallel to the axes of # and y. Hence the maximum normal and tangen-
tial forces make equal efforts, in this case, to dislocate the mass. Let the tangential
cohesive power of the mass be I, ; the greatest value which p, can assume will then be
also F,; and if the normal cohesive power (P,) be less than F,, the tension p, may
assume a value (F) between P, and F,, by which a crevasse will be formed in the posi-
tion above mentioned. Transverse crevasses may therefore be formed without any of
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that direct longitudinal tension which might, at first sight, appear necessary to produce
them. :
(2) If there be a considerable longitudinal tension, but no appreciable transverse
pressure, we have

P=F{AHV AR,

p=HA—/AFIF),

tan 206=K
Hence p,, the maximum tension, will be increased, and therefore, also, the tendency to
form a crevasse. Likewise the greatest value of « will be less than 45° and the direc-
tion of the crevasse, as we might expect, will be more nearly perpendicular to the axis
of the glacier.

(3) Many glacial valleys become narrower as we descend them, and consequently the
mass of the glacier may enter each part of the valley as a wedge, and may frequently
become more or less compressed. In such case B will be negative, and may become
very large. 'We shall then have

P=HA=B+/(A+By+4F7},
2:=HA—B—/(AFBy+iF},

F
tan 2o =m

In this instance, as well as in the preceding one, p, will necessarily be a tension, and
greatest (A and B being constant) where F is greatest, ¢. e. in the marginal portions of
the glacier. For the like reason, « will also be greatest in those portions. It will vanish
at the axis, where F vanishes. Hence, if the forces be sufficient to overcome the cohe-
sion of the mass, a curvilinear crevasse may be formed extending across the glacier and
meeting its axis at a right angle. This, however, is rarely the case, the transverse
crevasses being formed, in general, in the lateral portions only of canal-shaped glaciers,
where they will approximate more or less to straight lines. They are most likely to
be formed where A is a considerable tension, which is less likely to be the case in
converging valleys.

It is important to observe that in all cases in which the expression for tan 20 is posi-
tive, 4. e. where B is algebraically less than A, « must lie between 0 and 45° and con-
sequently the inclination of & curved crevasse to a tramsverse line perpendicular to the
axis must likewise always lie between the same limits. This rule is applicable, accordmg
to this theory, wherever transverse crevasses are likely to be formed *.

# An open curvilinear fissure in its progressive formation would be in some degree mﬂuenced by other
causes than the maximum tension at each point through which it might pass. Moreover, the cohesive
power has been above supposed to be the same in every direction from any proposed point. There may, on
the contrary, be planes of less cohesion, in which case if the cohesion along any such plane bear a smaller:
ratio to the internal tension perpendicular to it, than the cohesion perpendicular to the maximum tension
bears to p;, the crevasse may be formed along the plane of least cohesion. I know no reason, however, to
suppose that these causes are sufficient to modify in any essential degree the law enunciated in the text.
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30. Formation of Longitudinal Crevasses.—Transverse crevasses, as above stated,
are almost invariably formed in valleys the sides of which are approximately parallel;
longitudinal crevasses are as generally formed in valleys in which the sides are divergent,
and usually perhaps when they become rather suddenly so. They are found almost
exclusively at the lower ends of glaciers. The Rhone glacier affords the best-known
example of crevasses of this kind, but M. Aeassiz refers to a number of other cases, the
‘greater part of which, however, appertain to small glaciers*. At the foot of the great
ice-fall of the Rhone glacier, the valley expands largely, as is well known, and its incli-
nation to the horizon becomes comparatively small. Thus the ice, accumulating at the
bottom of the fall, exerts an enormous pressure & fergo on the ice immediately before it,
and this pressure is propagated onwards in directions which radiate from the bottom of
the fall. It is manifest that the force along each radiating line will be a great pressure.
Again, if we conceive the whole mass divided into concentric rings perpendicular at
each point to the above-mentioned radiating lines, the pressure along these lines will
extend the ring, and produce in it a great tension at every point, perpendicular to the
direction of the radial pressure above mentioned. Hence if we take any one of these
radiating lines as the axis of o, the radial pressure at any point upon it will be denoted by
—A, and the tension upon it in the direction perpendicular to the axis of , will be B.
The former will be a principal pressure, and the latter a principal tension; and if
crevasses be formed at all, they must be in directions perpendicular to that of B; 4. e.
they must be radial, as they are always observed to be. The glacier of the Rhone is
only a type, as regards longitudinal crevasses, of all other glaciers in which they exist.

31. An explanation of the phenomena of transverse crevasses, essentially the same as -
that above given, though founded on a more restricted mechanical and mathematical
analysis of the general problem, was given by me some seventeen years ago. I am not
aware that any doubt was entertained as to its validity, but I am also not aware of
any glacialist having recognized it previously to Dr. Ty¥paLL. M. Acassiz has given an
explanationt both of the transverse and longitudinal crevasses, involving apparently
the notion of the oblique tension which, I have proved, must necessarily exist in a
determinate direction. The mechanical reasoning employed, however, is too vague to
constitute a mechanical explanation of the phenomena. Moreover his work was’
published in 1847, three or four years after my memoir containing the preceding explana-
tion was printed in the Transactions of the Cambridge Philosophical Society. Principal
ForsEs, also, speaks of a drag from the sides towards the centre of a glacierf, but with
the view apparently, not of explaining the formation of transverse crevasses, but of
the veins in cases of the veined structure. His ¢ lines of greatest strain” must therefore,
I conceive, mean the same lines mechanically, not as my lines of greatest normal
tension, to which the crevasses are unquestionably due, but my lines of greatest fangential
action. If he supposed these two directions to be identical, it was a manifest error; for

* Systeme Glaciaire, p. 324. + Ibid. p. 320 et seq.
1 Occasional Papers, p. 57 ; also last chapter of his * Travels.’



MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS. 709

I have proved that they must in all cases differ by an angle of 45°. I have thought it
right to say thus much to vindicate my claim to having been the first to give any expla-
nation, founded on true mechanical principles, of the phenomena in question.

32. That the theoretical law above enunciated with respect to the directions of trans-
verse crevasses is the actual law, is determined, I conceive, beyond all doubt. It was,
in fact, so distinctly recognized by M. Aeassiz and others*, before careful observations
had been made on glacial motion, that it was regarded as a proof that the sides of a
glacier moved faster than its central portion. But the best and, I believe, the only
accurate recorded evidence on the subject is that afforded by the admirable map
published by M. Aaassiz, of the glacier of the Aar. There the crevasses, in a particular
locality, are laid down with geometrical accuracy, and the eye recognizes at once the
law in question, notwithstanding the minor deviations which must necessarily result in
such a case from local and irregular causest. Principal ForBEs, however, does not
seem to recognize this law; for he observesf that he agrees with some preceding
observers in believing crevasses to be mere accidents of glacial motion. I have, however,
demonstrated, as I had done before the publication of the paper in which this opinion
is expressed, that though a glacier should be affected by no irregularities of surface
along its margins or bed tending to dislocate it, the internal tensions arising from the
more rapid motion of its central portions would always tend to produce oblique trans-
verse marginal fissures. TLocal and irregular causes may frequently counterbalance this
tendency; but the cause itself which produces these fissures is no more accidental than
the law of the motion in which it originates. It might as well be asserted that the
longitudinal or radiating crevasses of the lower part of the glacier of the Rhone were
merely accidental phenomena,—an assertion which few glacialists, I imagine, would
venture to maintain.

33. The positions of the crevasses as above determined, will be those in which they
are originally formed. It is manifest that transverse crevasses will change their angular
positions with reference to the axis of the glacier, by the more rapid motion of its axial
portion. They will thus become more approximately perpendicular to the axis. More-
over, as they deviate from their original positions, less force will be exerted to keep them
open, and to counteract any independent or local causes tending to close them. They
do thus finally disappear, and generally at points not remote from those where they
were originally formed, and where local conditions probably aided their formation.
A closing up of the crevasses after a certain time, presents no difficulty; but the entire

* Systéme Glaciaire, p. 305.

+ I cannot here omit the expression of my conviction of the inadequate justice which has been rendered
in this country to the ¢ Systéme Glaciaire’ of M. Aaassiz. It professes to be, as it is, principally descriptive,
and contains more accurate details on many points than any other work professes to offer. The map which
accompanies it, founded on the very careful trigonometrical survey of M. Wirp, is full of beautifully deli-
neated details. 'We possess no other glacial document of the kind at all comparable to it. I shall have

other occasions to refer to it.
1 Occasional Papers, p. 151.
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disappearance of all traces of them, and the resumption of complete crystalline con-
tinuity in those parts of the mass in which these crevasses had previously existed,
remained a difficulty of which no physical explanation had been given till the experi-
ments of Dr. TyspaLL afforded so happy a solution of it by proving that the renewed
continuity was attributable to regelation resulting from the renewed contact of portions
of the ice which had been previously separated.

84. Formation of Crevasses in the deeper portions of a Glacier.—~The formation of
crevasses in this position must ever perhaps remain a matter of speculation; for we can
have little hope of making their existence a matter of observation. The general direc-
tion of maximum tension at any point of a glacier at a great depth, cannot be exactly
determined, because the general equations (c.), art. 16, cannot, for this case, be gene-
rally solved. It will be easy, however, to determine this direction in terms of the
internal forces for any point in the vertical plane through the axis of the glacier, and,
consequently, the section made by that plane with the surface to which the direction of
the maximum force is a normal—the surface along which the crevasse would be formed.
For this purpose let fig.  represent the vertical section through the axis of the glacier.

Fig. 5.

R’ R N
The undistorted element Q' R’ will be brought by the more rapid motion of the surface
into the position Q R, as described in fig. 3. The internal forces acting on the small
element pgrswill be A, B, C, and E, the latter producing the couple whose axis is
parallel to that of . . It is manifest, however, from the conditions of symmetry, that the
direction of the maximum tension must lie in the vertical plane through the axis of the
glacier, and will not be affected by B, which, as in other cases of transverse fissures,
must be supposed either a pressure or a comparatively small tension. Hence, putting
—C for B and E for F in our formule (¢.), art. 20, we have
tan 205:1—&2-—[-]?‘_6.

The angle ¢ is indicated in fig. 5 (see art. 28 and fig. 2). Near the surface, E and
therefore «, vanish, and the crevasse, if formed, will be vertical. At lower points of the
mass « will increase with E, and the vertical section of the crevasse will resemble the
curve M N in the figure.
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The maximum tension in the marginal portions of the glacier will be increased by F';
and it is in those portions, near the lower as well as near the upper surface of the mass,
that crevasses will be most likely to be formed. The forces tending to form them may
probably be much the same in both cases; but the tendency of the incipient fissures to
open into wide crevasses must almost necessarily be much counteracted near the lower
surface by the action of the bottom of the valley on that surface. The sides of a fissure
will not there be able to separate from each other with the same facility as at the free
surface of the mass. In fact any incipient fissure formed within the glacier and not
extending to its external surface, will have much less of this facility of subsequently
opening, than those which are formed nearer to the outer surface and directly commu-
nicate with it. I therefore conceive it to be very improbable that crevasses exist in the
deeper portions of a glacier, equal in number and magnitude to those which are seen in
its more superficial portions.

35. Effects of the Crushing of the Mass.—It may frequently happen that the maximum
pressure (p,) at any proposed point of a glacial mass shall be much greater than the
maximum tension p,, or the maximum tangential force T, (art. 18) at that point; and
the dislocation may be produced by the crushing power of p,, The element may thus
be broken into a greater or smaller number of fragments, and the constraint of the mass
removed. Its onward motion will then be continued, and its continuity restored by
regelation, till a repetition of the process becomes necessary to overcome a new state of
constraint. It is in this manner that the property of regelation enables us so beautifully
to account for the molecular mobility of a glacial mass, and the consequent freedom of
its central to move more rapidly than its marginal portions, without any reference what-
ever to the property of viscosity or plasticity.

86. Dislocation produced by the Tangential Force.—The third way in which the mass
may be dislocated is, that the tangential cohesion may yield to the tangential force on
any proposed element, as explained in article 28. For the greater simplicity of explana-
tion, I shall suppose the sides of the valley parallel, and A=0, and B=0. Also we
take C=0 and E=0 as in our first approximate solutions. Let pgrs (fig. 6) be the

Fig. 6.
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section of a small elementary rectangular parallelopiped (3z, 9y, 32) made by the plane
of the paper (that of 2y); and let p s be in the direction (p p') of the motion of p; it will
be parallel to , and the transverse line M p ¢ N, perpendicular to p p/, will be parallel to
y. Now the physical line M N will, in a short time, come into the position M' N', by the
assumed motion of the glacier, and the greater velocity of its axial portion. The
element p ¢ s will then come into the position p'¢'#'s/, and will be angularly distorted. It
will be acted on by the tangential force (F), forming two equal and opposite couples, with
a common axis parallel to z (art. 29, (1)), and tending to destroy the continuity on every
side of the element, by overcoming the tangential cohesion. The force F will be diffe-
rent for different angular positions of the element, and will always be greatest when the
sides of the element bisect the two right angles between p, and p,, the greatest tension
and the greatest pressure (art. 18). In the present case the directions of p, and p, will
each be inclined at an angle of 45° to the axes of & and y (art. 29, (1)); and there-
fore the intensity of the forces (F) of the two couples will be greatest when they act
respectively parallel to # and g, i. e. when the element is in the angular position repre-
sented in the figure.

Now if tangential dislocation take place, it must necessarily do so in those directions
in which the tendency of the forces F to produce it is greatest, or, in the case before
us, in directions parallel and perpendicular to the axis of the glacier, the tendencies
being the same in both those directions. Let us suppose, then, a complete tangential
rupture to take place, and simultaneously, on each side of the element p ¢ s, as well as
in the surrounding elements. Fach element, represented by p'¢'r's, will then regain its
original rectangular form by its elasticity, but so moving that its centre of gravity (4')
shall remain at rest, since the elastic force of restitution acts entirely within the element.
Thus p ¢ 7 s will return to its original rectangular form p"¢""'s"; and if we take two con-
secutive elements whose centres of gravity are G and G/, they will be brought into the
relative positions represented in the figure, in which G’ is slightly in advance of G, as
much, in fact, as is necessitated by the more rapid motion of the central parts of the
glacier. After the rupture, if we suppose the continuity to be instantaneously restored
(as it will be by regelation according to our theory), the glacier will again be brought
as a continuous mass into a position of no constraint by its general motion. By a repe-
tition of this process, the continuity of the mass will be constantly destroyed and as
constantly restored; and we thus see the modus operandi by which, taking any two
elements situated like G and (/, the one nearest the axis of the glacier gets gradually
in advance of the other, as it must do, in accordance with the general law of the
glacier’s motion.

37. But, it may be asked, if the dislocation takes place on the two sides of the
element whose directions are transverse to the glacier, simultaneously with the rupture
along the sides whose directions are longitudinal, why is it that the subsequent relative
or differential motion of two contiguous elements, such as G and G', should not be
transversal as well as longitudinal? The reason is obvious. ~The motion which instan-
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taneously takes place after the tangential dislocation is a motion of rotation about G,
the centre of gravity of the element, by which that point is not affected ; whereas the
motion with which we are here concerned, as that which alone can possibly produce any
finite differential motion, is the motion of the centre of gravity (G) é¢self, arising from
the general onward progress of the whole mass. Any real differential motion between
two particles must, in all cases (whatever, in fact, may be the directions of tangential
dislocation), take place in the actual direction of the motion of the particles. Thus, if
the directions of tangential dislocation be not parallel and perpendicular to the axis of
the glacier, as in the above case, the true differential motion of two particles must still
take place in the actual direction of their motion.

38. In the above case we have assumed the rupture to be complete and simultaneous
on every side of the element, and also the absence of friction between contiguous
elements. If it be otherwise, as it doubtless will be, the same reasoning will be appli-
cable; but the relief of the constraint of the mass, or of any element, at each disloca-
tion will be only partial, and the consequent differential motion will be somewhat less.
In such case the facility with which the central portions of the mass move faster than
the other parts will be diminished.

- 39. T am not here supposing that this tangential dislocation is the most probable
mode by which the constraint of the glacial mass is commonly relieved under great
pressure. The crushing of its elementary portions (art. 35) would appear, perhaps, a
more likely modus operandi; but possibly both these processes may contribute to the
actual dislocations (without finite fissures) by which the constraint of the mass is instan-
taneously relieved. If the dislocations were entirely tangential, it is easily seen that
two contiguous elements, like G and G’ (fig..6), would ultimately be separated, while
each should preserve its physical identity. Consequently, identical particles forming at
one time the continuous transverse linear element, M N, might subsequently be con-
verted into an elongated loop which should be discontinuous in the marginal parts of
the glacier, where the differential motion would be greatest, and continuous in the cen-
tral portions, where that motion would be least. If, on the contrary, each element
should be crushed in the dislocation, it would manifestly never regain its primitive form,
but would become compressed or extended as if it were plastic or viscous (art. 4, &c.).
In such case the original transverse element M N would be converted into a continuous
loop. But, at all events, whether the real modus operandi consist of only one of the
above processes, or of a combination of both, it is of the first importance for a just
appreciation of the principle of regelation, that we should see distinctly how the conti-
nuity of the glacial mass is broken and again restored by it, in contradistinction to the
effect of real viscosity, which would prevent that continuity from being broken at all.
In the latter case also there would be no particular structure, such as the crystalline
structure, to be destroyed, and no necessity for the power of regelation to restore it. It
is in the difference between the modus operandi when the mass is viscous, and that when
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the mass is crystalline and brittle, that we see best, perhaps, the distinction between the
Viscous and Regelation Theories.

SectioN V.—On the Veined Structure of Glacial Ice.

40. Two different theories, as is well known, have been proposed to account for the
curious structure frequently observed in glacial ice, and termed the laminar, veined, or
ribbon structure. The preceding investigations bear intimately on these theories. One
of them, that of Principal FoRBES, asserts the structure to be due to the sliding of one
thin lamina of ice past another, or to their differential motion—a process by which he
supposes extensive portions of the mass to be divided into slices, usually nearly vertical,
and not exceeding, in many cases, the fraction of an inch in thickness. His first idea
was that these parallel discontinuities were, after their formation, filled with infiltrated
water, which, by being frozen, formed the veins of blue ice. He afterwards appears to
have abandoned this notion; but what physical process he supposed to be substituted
for infiltration I have not been able distinctly to ascertain. This, however, is not
material as regards the examination which I propose to give this theory in the sequel.
The other theory above alluded to is that first proposed by Dr. TYNDALL, an essential
point in which is that the laminge of ice which characterize this structure must be per-
pendicular at each point to the direction of greatest pressure there. So far alone my
researches are related to this theory, and so far only shall we be here concerned with it.
I shall not discuss the manner in which this pressure is supposed to produce the lami-
nation in question, a point on which somewhat different opinions have been pro-
pounded. It is the mechanical part only of the theory that I shall discuss. It has
been called the pressure theory of the veined structure, while that advocated by Prin-
cipal ForBES has been termed the differential theory of the structure. The lines in
which the laminz of blue or white ice meet the surface of the glacier will generally be
curved lines, which I shall designate as lines or curves of structure.

This structure, as well as the lines depending upon it, have received different designa-
tions according to the portion of the glacier where it is found, or the directions of the
lines of structure. Thus, when found in the lateral portions of the glacier, Dr. TYNDALL
has termed it the marginal structure. 1Tt is frequently found in canal-shaped glaciers.
The lines of structure in such cases are usually inclined at small angles to the sides of
the glacial valley. 'When the lines stretch more directly and entirely across the valley,
the structure is said to be ¢fransverse, and is more especially developed at points below
an ice-fall and not remote from it. In the axial part of a glacier the lines of structure
are frequently longitudinal, or parallel to the axis. The structure is then called longi-
tudinal. 1t is generally best exhibited at the confluence of two large glaciers, as those
of the Finsteraar and Lauteraar. It may be convenient to preserve these designations,
though, as will be seen, they are the results, according to the pressure theory, of the
same general cause, modified by the local conditions under which it acts. I take again
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the first approximate solutions of our equations, as applicable to all usually accessible
depths. '
. 41. Pressure Theory of the Laminated Structure.—We have generally,

2=%{A+B++/(A=B)+4F?},

2:=3{A+B—+/(A—BJ+4F},
tan 2= K-Q_%

In the formation of crevasses, we have been principally concerned with p, and its
direction, we shall now be more especially concerned with p,, when a pressure, and the
corresponding value of «; but it will be convenient to bear in mind that, according to
the fundamental principle of this theory, the curve of structure through any point will
always coincide with the direction of p,, the maximum tension or minimum pressure at
that point, p, being always the maximum pressure there. Also, since the direction of
. is horizontal (neglecting C and E as in our first approximation), each laminar surface
must be vertical, and will therefore be completely determined by the line of structure
corresponding to it.

42. Formation of the Marginal Structure—I have stated that this is frequently found
in canal-shaped glaciers. Suppose the glacial valley to be more or less convergent, so
that the transverse force B may become a pressure; and suppose its magnitude to be
greater than that of A, as it probably will be generally in such a valley. We may also
suppose A to be a pressure, though this is not essential for the production of the laminar
structure in the case before us. The preceding formule now become

p=4{—A—B+y/(B—AV+4F},
P=H—A—B—+/(B—AyF4F?},

oF
tan 20 = B=A'

p, will be the maximum pressure, and the structural curve at any proposed point will
be perpendicular to the direction of p,; it will therefore coincide with that of p,, which
will be determined by the above expression for tan 2z. Let «, be the value of & which
gives the direction of p,, or that of the curve of structure at any proposed point. Then
will «, lie between 0 and 45°. At points near the axis of the glacier, the fwisting
tendency, and therefore F also, will be very small, and may be neglected. We shall

then have
, p.=—B.

Let us first suppose B too small to produce the veined structure. It will not, in such
case, exist at all in the central portion of the glacier. At any point more remote from
the axis, p, will be increased by the increase of F, and may become sufficient to produce
the structure. e, will be greatest when F is so, 4. ¢. at the sides of the glacier, supposing
A and B to remain constant. Should B be much larger than F, as we should antici-
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pate in the cases we are considering, «, will be much less than 45° the greatest value to
which it can attain when the transverse pressure B predominates over the longitudinal
pressure A. The lines of marginal structure will be as represented in fig. 7, by the con-
tinuous portions of the oblique lines.

Fig. 7.
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43. Formation of the Longitudinal Structure.—If B, the transverse pressure, be very
great, p, may be sufficient to develope the veined structure in the central as well as the
marginal parts of the glacier. The curves of structure will then be continued towards
the axis of the glacier, to which they will constantly converge as an asymptote, as repre-
sented by the discontinuous lines in fig. 7. If B be very large, the lines of structure,
when examined onlyin a limited area, will be sensibly parallel to each other and to the
sides of the glacier.

44. Formation of the Transverse Structure.—Let us now suppose the longitudinal
pressure A to be very great, as it must be, for instance, at the bottom of an ice-fall.
‘We may also suppose it much greater than B. 'We shall then have

oF
tan Q0= — m7

and consequently 2« will either be a small negative angle, or positive and nearly equal to
180°; and therefore o will either be small and negative, or positive and nearly equal 90°.
The former must, from the nature of the case, correspond to the direction of maximum
pressure, and must therefore be «,, and the other «,, as in fig. 8. «, will =0° at

Tig. 8.

e
— :
PL )

Ko

/
R

the axis, and will be greatest at Q and R. If A be sufficiently great, the curve of
structure will be continued across the glacier, constituting the transverse structure.

45. There are two cases connected with the formation of the transverse structure at
the bottom of an ice-fall which ought to be noticed. It may happen that the valley
below the fall shall be an elongated slowly converging valley, or, as occurs perhaps more
rarely, a rapidly diverging one like that already described at the extremity of the Rhone
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glacier. In the first case, especially if the inclination of the valley should gradually
increase and become considerable, the transverse pressure, B, may be much increased,
and the longitudinal pressure, A, much diminished as we descend the valley, till it
becomes less than B. In such case the curves of structure (so far as they depend alone
on the action of the external forces) would become more and more elongated, as repre-
sented approximately in fig. 9. If B should become greater than A,

oF
tan 2a=§:—ga

Fig. 9.

T~

W) ==

and the case becomes the same as that previously considered (art. 43), in which the
formation of the longitudinal structure is explained. So long, however, as A remains a
pressure sufficient to produce the laminar structure at right angles to the axis, the loops
will be completed; if A become too small to produce the structure, the curves will not
be continued across the axis, and the structure will exist only as a marginal structure;
and if B still increase (by the glacial valley becoming very narrow), so as to produce
the longitudinal structure along the axis, the structure will become longitudinal, as
represented by the two lower lines of structure in fig. 9.

46. In the second case above mentioned, of a rapidly divergent valley of small incli-
nation, the mass will be urged onwards by a great radial force, as above explained
(art. 30), and the curves of structure will be perpendicular to the crevasses, and conse-
quently approximately concentric about the foot of the ice-fall, where this structure
commences.

47. Application of the preceding Theoretical Results.—It must be recollected that the
phenomena of glacial structure as they actually exist at any moment, are not merely the
results of the instantaneous action of the mechanical and physical causes to which their
original formation may have been due, but to those causes together with the effect pro-
duced by the motion of the glacier. In the formul® of this section I have entirely
neglected the influence of transmission by this motion, on the forms of the curves of
structure, and have spoken of them as though they were dependent only on the forces
originally producing them, and unaffected by the unequal motions of the central and
marginal portions of the glacier. This, however, cannot be the case, unless we suppose
the structure to be modified at every instant in exclusive obedience to the physical and
mechanical causes in which it originates—a supposition having a great apparent impro-
bability. The motion of a glacier being known, it is merely a geometrical problem to
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point out accurately the nature of the modification which would be produced in a given
curve or surface of structure by transmission alone; the amount of that modification
can only be known by observation. I shall investigate this subject in a subsequent sec-
tion. At present, in the application of the preceding formulz to particular cases, my
conclusions will be restricted to the hypothesis of the structure being due alone to the
instantaneous action of the forces tending to produce it in each particular locality.

48. The marginal structure is found more or less developed in most canal-shaped
glaciers. It has been best observed, perhaps, on the glacier of the Aar and its tributa-
ries, and on the glaciers at Chamouni. It sometimes coexists with marginal crevasses.
In such cases the curves of structure ought to be, according to the pressure theory,
perpendicular to the crevasses. Moreover, the coexistence of the structure and cre-
vasses implies a longitudinal tension and a transverse pressure; in which case the
direction of greatest tension will make an angle of much less than 45° with the axis or
sides of the glacier, and such, therefore, will also be the case with the marginal curves
of structure. This seems accordant with the best observations; for though the forms
and positions of these curves have not yet been observed with all the care they require,
there is little doubt as to their meeting the sides of the glacier at finite angles. The
law of perpendicularity between the structural curves and the crevasses was first
observed, I believe, by Principal ForBEs on the glacier of the Aar; and in speaking
of the Talefre glacier* he remarks, “The crevasses as they present themselves are
convex towards the origin of the glacier, and here, as in other cases, perpendicular to
the veined structure.” The same impression appears to have been produced on other
observers.

49. It is manifest that the marginal structure may be modified by any local con-
ditions which affect the internal pressure of the glacier. Principal ForeEs describes
what he regards as an extraordinary case, and one to which he appeals as affording a
crucial test in favour of his own views+}. It is furnished by the glacier of La Brenva,
and is represented by fig. 10. The line ¢ C B D represents the side of the glacial valley,

Fig. 10.
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in which projections at B and D appear to form a somewhat sudden obstacle to the
onward motion of the glacier in the direction FD. Now it is certain that the maxi-

* QOccasional Papers, p. 192. t Ibid. p. 56.
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mum pressure between B and D would be very great, and that its direction would be
nearly perpendicular to that of the motion of the glacier. Consequently the direction
of the veins, according to the pressure theory, ought to coincide approximately with the
direction of the motion, as represented by the lines between B and D. The example,
as I understand it, presents no difficulty in the pressure theory *.

60. The transverse structure is well developed near the bottoms of the ice-falls of the
upper part of the Glacier du Géant, and that by which the ice is precipitated from the
glacier of Taléfre to that of Léchaud; but the most striking exhibition of it is afforded
by the lower end of the Rhone glacier, which has already been mentioned (art. 30) as
affording an excellent example of longitudinal, or, more properly, radiating crevasses.
The curves of structure, according to the law above stated (art. 48), are perpendicular
to the crevasses, and therefore coincident with the surfaces of greatest pressure, as they
ought to be according to the pressure theory.

61. The longitudinal structure is perhaps best developed below the junction of the
Finsteraar and Lauteraar glaciers, where they form the glacier of the Aar}. The mar-
ginal structure is well exhibited along the flanks of both the tributaries, and is con-
tinued along those of the combined glacier resulting from their union. Tt is from the
point of junction O, fig. 11, and on each side of the axis O, that the longitudinal

B : Fig. 11.
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structure is so finely developed. The tributary B A represents the Lauteraar glacier.
The oblique lines on either flank represent the marginal structure, which is supposed to
extend only to a certain distance from the sides. The whole width of the glacier of
the Lower Aar is much less than the sum of the widths of its two principal tributaries,
so that the transverse pressure (especially near the axis), for some distance below the

* T may remark that I see nothing distinctive in the observations made by Principal ForsEs on La
Brenva to determine the relative velocities of points at different distances from the side of the valley.
Exactly similar results would be obtained on any glacier in which the velocity of the central should be con-
siderably greater than that of the marginal portions.

+ Ty~pALL’s ¢ Glaciers of the Alps,” p. 887.
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junction, must manifestly be enormous. About some such section as O A this pressure
will begin to be felt, and will be in full operation about A A'. Now considering the
direct effects which would be produced by the forces acting on the united glacier below
the section A A' (independently of the effects of transmission), that portion will pre-
sent precisely the case of longitudinal structure considered in art. 43. The transverse
pressure, as above remarked, will be enormous, especially along the axis, to which it will
there be perpendicular, and the general structure will be such as is represented in fig. 7,
and repeated in fig. 11. The maximum pressure at any point in the axial part of the
glacier will be increased by the mutual action of the two tributaries after their con-
fluence, required to divert each from its original direction; and in the marginal parts of
the great glacier the maximum pressure will be increased by the comparatively large
value of F. In the region intermediate to the marginal and central portions, the
pressure will probably be less than in either of those portions, but in the figure it is
supposed to be sufficient to superinduce a longitudinal structure. In this case, however,
the angle « at any point P would not increase regularly, and the curves in the part of
the glacier now referred to might present some degree of inflexion.

According to Dr. TynpaLL, the longitudinal character of the veined structure is
strongly developed, as a general rule, under all considerable central moraines; and as
such moraines always originate in the confluence of two glaciers, and present conditions
similar to those of the Aar, the explanation in all such cases will be precisely similar to
that above given, assuming the structure to be due to the instantaneous action of the
forces acting on the mass, and not to transmission.

52. In the glacier of Taléfre the ice-stream is divided by the Jardin into two separate
currents, as roughly represented in fig. 12, which thus form, in fact, two separate tribu-
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taries to the united glacier which proceeds, below the Jardin, to precipitate itself over
the ice-fall of Taléfre. Principal Forses appears to have examined the veined structure
carefully, and describes it as represented in the figure by the fine lines converging to the
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fall. The dotted lines are moraines, and indicate the course of the ice-current. It is
manifest that the mass, in approaching the fall, must suffer immense transverse com-
pression, which accounts for the longitudinal structure in that part of the glacier.

63. Formation of the Veined Structure in the deeper portions of a Glacier.—We cannot
determine completely the direction of the greatest pressure at any proposed point at a
great depth in a glacier, for the reason above assigned (art. 34). That direction would
give us the normal to the surface of greatest pressure, and therefore, also, to the surface
of structure through that point, whence the differential equation to the surface would
be known. In our practical inability to follow this method, we may proceed, as in
art. 34, to determine the section of the required surface made by a vertical plane through
the axis of the glacier. In a glacier of considerable width, the sections of this surface
made by planes parallel to the one just mentioned, will be very similar to the axial
section ; because the velocities will be very nearly the same for all points in a transverse
line on the surface of the glacier, within considerable distances of the axis*; and the
same therefore must also hold for points at greater depths. The most important case
1s that which occurs at the base of an ice-fall in which A becomes very large and a
pressure. Also B, the transverse force, may
be considered much smaller than A, and a
pressure. Our general formule will become 4

p=—3{A+C—/(A—Cy+4E7,
2= —HA+C+/(A=Cy +4E7),
173=-B~;

and we shall have, also,

2E
cos 3=0, tan 2e=—1—=

the plane of « being now that of 2z. Now B being supposed small compared with A,
P, Will be the maximum pressure and p, the minimum pressure, or algebraically the
maximum tension. The above equation gives two values of «. Now 2« must be nega-
tive and less than 90°, or positive and between 90° and 180°; and therefore o must be
negative and less than 45° or positive and between 45° and 90°. The negative value
will evidently here correspond to p, the greatest pressure. A may possibly be much the
same at different depths, in our present case, and E (art. 34) will be zero at the surface,
and will increase with the depth. C also increases with the depth, as does, therefore,
caeteris paribus, the negative angle w,. It must always, however, be less than 48° so
long as Cis less than A, whatever may be the depth ; and near the surface it will vanish.

* M. Aeassiz has best exemplified this in his admirable map and diagrams of the glacier of the Aar
already referred to. He there delineates (Atlas, pl. 4) the forms assumed by an originally straight trans-
verse physical line on the glacier near the junction of its two great tributaries in three successive years.
The motion of different points on the central portion of the mass do not differ much throughout a breadth
of nearly one-half of the glacier. ’



722 MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS.

The axial section of the surface of structure may be represented by Q R in fig. 13, varying
in its inclination to the nearly vertical axis of z from zero to less than 45°. A similar
conclusion will hold, as above stated, for all the central portion of the glacier.

The structure here considered is manifestly a transverse structure, and is probably
only formed where there is a sudden change of inclination in the bed of the glacier,
like that at the foot of an ice-fall. The intensity of the longitudinal pressure to which
it is there due, may possibly diminish rapidly in receding from the fall; and so far it
would follow that, where the structure is continued to any considerable distance from
the locality in which it was formed, it must be due in a great degree to transmission.
But this is a question which I reserve for further discussion.

54. Differential Theory of the Veined Structure.—The idea on which this theory is
founded has already been stated at the beginning of this section (art. 40); and the modes
in which dislocation may take place so as to admit of the more rapid motion of the
central portion of a glacier, have been explained. It has also been pointed out (art. 36)
that the real differential or relative motion of two contiguous particles of the mass must
necessarily be in the common direction in which the particles are constrained to move,
by virtue of the external conditions to which the whole glacier is subjected. This, in
fact, belongs to the definition of “ differential motion ” as I understand the term; nor
can I conceive how any mechanical effects, such as dislocation or bruising, can be attri-
buted to a ¢ differential motion  in any arbitrary or conventional sense, rather than to
the real relative motion which I understand to be meant by the expression. If so, it
appears to me impossible to accept this theory of the veined structure without a far more
explicit explanation than any which has yet been given of it. ~Assuming, then, what I
conceive to be the only intelligible and determinate meaning of the above expression, I
shall proceed to investigate certain geometrical results which flow from it. Since the
investigation is entirely geometrical, we may suppose the surface of the glacier and its
longitudinal axis to be horizontal. I shall also suppose the line of motion of every
particle to be parallel to that axis, and the velocity to be invariable along each such line,
but different for different lines, (1) because the velocity of the central is supposed to be
greater than that of the marginal portions of the mass, and (2) because the velocity of
its upper is greater than that of its lower surface.

65. Let P (fig. 14) be any particle of the glacier, and let the plane of the paper
represent a transverse plane perpendicular to the common direction of all the lines of
motion of the component particles of the mass. Also let p be any other particle like-
wise in the plane of the paper, its distance from P being very small and equal to ¢;
i. e. p must lie in the circumference of a circle in the plane of the paper, whose centre
is P, and whose radius ¢ is extremely small. Our first object will be to determine the
relative velocity, or differential motion of P and p, and the positions of p in the small
circle when that relative velocity is a maximum, and when it is zero.

For this purpose let the horizontal plane of the base of the glacier be made the plane
of 2y, and the vertical plane parallel to the longitudinal axis of the glacier, and along its
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flank on the left, the plane of #z. The plane of yz will be a vertical transverse plane;
let it be represented by the plane of the paper, to which, therefore, the line of motion
of every particle will, by hypothesis, be perpendicular. Let P (fig. 14) represent a -

Fig. 14.

A Y M
material point in the plane of the paper, or that of yz. (We take it in this particular
plane because we shall not be immediately concerned with the coordinate @.) Let
AM=y, and MP=2. Also, take another point p supposed to be very near P, and let
its coordinates be y-+# and 24, 7 and  being referred to P as origin. Also let V be
the velocity of P perpendicular to the plane of the paper, and V4o that of p; V will
be some function of y and z; and v a function of » and . As we have chosen the
coordinate planes, V will increase with y and 2, because the centre of the mass moves
faster than its sides, and the upper moves faster than the lower surface; and for the
like reasons, v will increase with s and {. Now since 7 and  are very small, we may
consider any increase of v, due to an increase of 5, as =u», and an increase due to that
of T, as =p/'¢, where p and ' are functions of y and z, but independent of # and ¢
They express the rate at which V increases as we pass from P to contiguous points in
the plane of the paper, and in directions parallel respectively to the axes of y and 2. We
shall then have

. v=pn+p';
or if
7=pcos d,
{=p¢sin,

v=p (w cos 8-’ sin 4).
From what has been above stated, this quantity must be a maximum with respect to 4,
considering w, ', and ¢* as constants. This gives
—w sin §+4p' cos §=0.
* The tendency of the tangential differential motion of two particles very near together, to bruise or dis-
locate the mass, will manifestly depend on the contortion or twisting produced by this relative motion, and
therefore on the angular change of position of the line joining the two points. Thus, in fact, 2 is the quan-

tity to be really made a maximum. This is equivalent to considering ¢ constant in differentiating as in the
text.
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Let 4, and 4, be the two values of 4 which satisfy this equation; then

!
tan d,= tan 4, =K,
‘ [

and
I"" o
b,= tan“’; +4180°.

From the above expression for v, 4, gives v a positive value, and 4, the same numerical
value with an opposite sign, the one being the algebraical maximum value, the other
the minimum one.

Moreover, we see from the above value of v, that v=0 when

*
tan (9:—-;:— cot d,,

which shows that the angular distance between the directions in which v is respectively
a maximum and zero, is equal to a right.angle.

56. To interpret these formule, draw P p (fig. 15) Tig. 15.
!
making the angle tan“% with the axis of y. The n
relative velocity for p and P will be greater than 7 A
. . . T
for any other point at the same distance from P. \ /

Draw P P, perpendicular to P p, taking P P, very »

small; then since v=0 in the direction at right P
angles to P p (by the last equation), the velocity of S
P, will equal V, that of P. At P, (since it is nearer
the central axis of the glacier than P) the rate of increase of V, as depending on g, will
be less than at P, and therefore w will also be less (art. 55); and for a like reason * (since
P, is nearer the lower surface than P) u' will be increased. For both these reasons

!
0(: tan“%) will be greater at P, than at P. Draw P, p, accordingly. Again, draw

P, P, perpendicular to P, p,, making P, P, very small. The velocity of P, will still =V,
and the relative velocity of p, and P, will be a maximum in the same sense as before.
We may proceed in the same manner with any number of points. Now, when we pass
to the limit, by taking P P,, P, P,, &c. indefinitely small, the locus of P P, P,, &e. will
become a continuous curve, possessing the dynamical property, in the case of a glacier,
that each of its particles moves with the same velocity perpendicular to the plane of the
paper, and they have consequently no tendency to separate from each other.

Again, taking ¢ indefinitely small, we shall have another continuous curve p p, p,, &c.
contiguous to the former, and so related to it that the relative velocity of two particles
situated respectively on these curves, and on a common normal to them, will be a

* The increase in the rafe at which V increases as we descend from one longitudinal line of motion to
another, cannot be made a matter of observation, but the analogy with the variation of V in passing from
the axis of the glacier to its sides (in which case we know that the rafe of variation increases) would seem
fully to justify the assumption. The conclusion of the text, however, is not dependent upon it.
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maximum, and will consequently have a maximum tendency to separate from each other
by their differential motion. Ihave spoken here of physical points as perhaps conveying
more distinctly the idea of the intervening distance denoted bye. I might have equally
spoken of indefinitely small elements of determinate forms, considering ¢ as the distance
between their centres of gravity. These are only different kinds of phraseology by
means of which we reason on the ultimate elements of which a continuous mass must
be constituted.

In the above investigation the velocity of each particle has been assumed to be the
same at every point along its line of motion. Consequently whatever holds for the
motions with which these particles pass through one transverse plane, will hold with
respect to any other such plane. Consequently there will be two contiguous cylindrical
surfaces generated by lines parallel to those of the motion of the glacier, and having
for their directors the two contiguous curves above described on the plane of yz; and
the motion of the particles in these cylindrical surfaces will have the same dynamical
characters as those above enunciated for the particles in the two guiding curves. There
will be an indefinite number of such surfaces following the same law. A section of the
mass, made by a transverse vertical plane parallel to that of yz, will be represented by
fig. 16. Each surface will be perpendicular to this transverse plane.

Fig. 16.
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This system of surfaces would necessarily result from the differential motion in the sense
in which I regard it; nor can I conceive how the veined structure can originate in that
motion, in the way in which the author of the theory appears to consider it to originate,
unless the veins should coincide with the surfaces here investigated. In such case every
line of structure on the surface of the glacier, in the typical case above considered,
would coincide with a line of motion, and would therefore be parallel to the axis and
sides of the glacier. In the central parts of the glacier, where the variation of V for
different points situated on a transverse horizontal line is usually very slow, » will be

!
very small, and therefore 4 (: tan“%) will nearly equal 90°. Consequently the struc-

tural surfaces will be very nearly horizontal. In the marginal portions of the glacier
these surfaces will meet the superficial surface of the mass at angles

!
=90°—¢=90°— tan™* %

which will be nearly =90°, since «' will be usually small near the upper surface, and w
MDCCCLXII. 5 @



726 MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS.

will be comparatively large near the sides of the glacier. The superficial curves of
structure would be all straight lines parallel to the axis of the glacier.

In actual glaciers, the forms of the curves of structure on the outer surface would be
modified by the fact of the unequal thinning of the glacial mass in consequence of the
more rapid thawing towards its lower extremity, so that the existing external surface is
no longer parallel to the longitudinal lines of motion. Consequently the outer surface
would intersect the internal structural surfaces obliquely, and the superficial curves of
structure would be changed from straight parallel lines to very elongated loops, but
would never approximate to straight transverse lines, as they always do at the foot of an
ice-fall. 'We may also observe that there could be no longitudinal development of veins
along the axis of the glacier, as the immediate result of differential motion. Such veins
could only exist by transmission, as will be explained in the next section, where I shall
revert to the forms of the surfaces of greatest differential motion which have been here
investigated.

57. Modification of the Veined Structure arising from the Motion of the Glacier—1I now
proceed, according to my intention as above expressed (art. 47), to examine the modifica-
tions produced by the general motion of a glacier, on the forms and positions of the lines
and surfaces of structure as originally produced by the immediate action of the causes to
which they may be due. Such modifications as can be observed on the surface of a gla-
cier, are principally due to the more rapid motion of its central portion; the interior
surfaces of structure must also be modified by the more rapid motion of the upper sur-
face of the mass. In an ordinary canal-shaped glacier, it is manifest that the marginal
curves of structure will thus be brought into more approximate parallelism with the sides,
if originally inclined to them. This modification will be small. A greater one will be
produced in the transverse structure, such as is usually found at the foot of an ice-fall.
There the superficial curves of structure run almost directly across the glacier, by the
motion of which they will be transformed into elongated curves, at distances from the
fall sufficiently great, the elongation increasing with that distance. In a glacier, like
the Aar, formed by the junction of two great tributaries, the modification of structure
below their confluence will be more complicated. Let fig. 17 represent the glacier as

Fig. 17.
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before, and let @, o'%' be two lines of marginal structure, representing the two systems
of lines to which they respectively belong. A particle in the tributary glacier will move
parallel to the side of the glacier till it arrives, for instance, at %, a point near the section
O A, and will afterwards move parallel to the axis OX. When the particle at garrives
at O, suppose the particle which was simultaneously at 4 to have arrived at ¢, & ¢ being
parallel to O X; then will O ¢ be the position in the united glacier of the physical line
of structure which before occupied the position @b. But the velocity with which a par-
ticle will move from & to ¢ in the central part of the united glacier, will be considerably
greater than that with which a particle will move from ¢ to O along the side of the
tributary. Consequently the distance & ¢ will be considerably greater than ¢4, and O ¢
will make a proportionately smaller angle with O X than ¢ b makes with the side ¢ O
of the tributary. Hence, if the lines of marginal structure approximate to parallelism
to the sides in the tributary, the same lines, forming those of the longitudinal structure
in the central portion of the united glacier, will approximate still nearer to parallelism
with each other and with O X. Subsequently this approximation to parallelism will
decrease, since a particle will move rather faster along O X than along & ¢; but assuming
always that the divergency is small in the marginal structure of the tributary, a simple
calculation shows that it will not become considerable in the united glacier except at
distances from the junction equal to many multiples of the whole breadth of the
glacier*, Such, at least, would be the case with the glacier of the Aar. If, on the
contrary, the lines of marginal structure in the tributaries should make a considerable
angle with the sides of the glacier, they would also make a considerable, though
smaller angle with the axis of the united glacier, and their inclination to that axis
would afterwards increase more rapidly.

Taking the opposite flank of the glacier, suppose two particles on the same line of
structure to be simultaneously at ¢' and &'; and reasoning as before, suppose &' to have
moved parallel to the side of the united glacier to ¢/ while @ moves to A. Then will
A ¢ be the resulting position of the same line of structure as previously occupied the
position @'¥. In this case, however, &' ¢ will be nearly equal to @' A, since the velocities
along the margins of the combined glacier and the tributaries will probably be much
the same. Hence the directions of the marginal lines of structure with reference to
the sides of the valleys, will be less changed than those of the longitudinal structure
with reference to the axis O X.

I have above supposed the absence of any transverse lines of structure on the central
portion of the tributary glaciers. If, however, they exist so as to complete the loops of
the curves (mm') (fig. 17), they will of course also exist, by the transmission we are here
assuming, in the combined glacier, in the forms of similar loops, as represented in the
figure.

88. If we compare the forms of the marginal structural curves in a canal-shaped
glacier (represented in fig. 7, art. 42), resulting from the immediate action of the forces
¥ This caleulation is founded on data supplied by M. Aeassiz in his ¢ Systéme Glaciaire,’ p. 451.
a2



728 MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS.

producing them, it is evident that it will generally be difficult or impossible to recog-
nize by observation the modification which may have been produced in them by trans-
mission. The case of structure represented in fig. 9 (art. 45), if the real structure
in a glacier were sufficiently developed and carefully observed, would afford a test as to
whether the forms were original, or had been modified by transmission; for, in the
latter case, the loops would never change by elongation into an absolutely longitu-
dinal structure as represented in the figure referred to. But this test is far, at present,
from being a practical one. Again, in the glacier of the Aar, if the structure were per-
fectly developed, it would afford us the required test, as is easily seen by comparing
fig. 17 and its completed loop in the main glacier, as transmitted from the tributary,
with fig. 11 and the lines of longitudinal structure in the main glacier. If the glacier
exhibited either of these structures complete, it would testify at once to the point in
question. I am not aware, however, that the structure, to whatever cause it may be
due, is sufficiently developed, or has been observed with sufficient care, to afford any
positive testimony on the subject. The glacier of the Rhone, also, fails to afford us a
practical test on this point; for the curves of structure may there be accounted for
either by supposing them instantaneously formed or transmitted from the fall where
they originate.

The supposition that the structural surfaces, at points of a glacier remote from the
place at which they commence, are merely the effects of transmission, involves the
conclusion that the veined structure can only be originally formed under enormous
pressure (according to the pressure theory), like that at the bottom of an ice-fall, and
that, when once formed, it is difficult to obliterate. In this case it would seem that the
transverse curves of structure formed at the bottom of a fall ought to be distinctly pre-
served at a distance from it, as elongated loops extending completely across the glacier.
I am not aware how far they are so, either in the case in which they proceed from the
Taléfre fall, for instance, on the Mer de Glace, or from that of the Géant. The glacier
of La Brenva above cited (art. 49) seems to afford an example of the instantaneous
generation of the veined structure under a pressure which may not be comparable with
that immediately below the junction of the Aar tributaries; and this same example at
La Brenva seems also to afford an instance of a comparatively sudden obliteration of the
structure where the immediate cause of it ceases to act. We may also remark that the
marked and increased development of the longitudinal lamination along the central
moraines proceeding from the junction of two considerable glaciers, appears to indicate
the local efficiency and instantaneous effect of the causes of the structure. But par-
ticular cases of this kind require to be examined with greater accuracy of detail before
we can derive from them any reliable inferences. It would seem most probable that the

~structure in any particular locality may frequently be due partly to the instantaneous
action of physical causes, and partly to transmission. . The question well deserves the con-
sideration of those glacialists who may interest themselves about this curious structure
of glacial ice, and the physical and mechanical causes to which it may be due.
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I may make another remark on this doubtful question. The dirt-bands of the Mer
de Glace, if Dr. TYNDALL’S views respecting them should be proved to be correct, may
afford the means, supposing their forms and positions sufficiently determinate, of de-
ciding how far the loops of structure in the middle and lower parts of the glacier may
be merely the original transverse curves at its upper end, modified by transmission, or
may be attributable to the great transverse pressure to which that glacier must be sub-
jected at certain points of its course. If the dirt-bands are entirely formed at the upper
part of the glacier and are there coincident with the curves of transverse structure, and
if they also remain coincident with them at distant points of the glacier, then, since the
dirt-bands must necessarily be transmitted forms, the curves must almost necessarily be
so likewise. Principal ForBES'S theory of the dirt-bands would not lead to the same
conclusion. ‘

69. The Pressure Theory and the Differential Motion Theory of the Veined Structure
compared.—The pressure theory of the veined structure, so far as it asserts the perpen-
dicularity of such surfaces to the directions of maximum pressure, appears to be in perfect
accordance with observed facts and mechanical deductions, whether the structure be
marginal, transverse, or longitudinal. The transversal directions and approximate verti-
cality of the structural surfaces at the bottoms of ice-falls, and the general existence
of the structure wherever the glacier must, from the conditions under which it is placed,
be subject to great pressure, are also perfectly consistent with this theory. We may
also remark that the evidence of facts in favour of it is in a great measure independent
of the degree of efficiency which may ultimately be attributed to the transmission of the
structural forms. I am not, indeed, aware of any leading observed facts of the veined
structure inconsistent with this theory.

With respect to the Differential Theory, the whole of the mechanical reasoning on
which it is based is professedly popular, vague, and undemonstrative, and, I believe, as
erroneous as such reasoning must almost necessarily be in cases as intricate as those
which glaciers present to us, unless it be guided by an accurate conception and a careful
analysis of problems which admit of more or less accurate solution, and are typical of
those presented to us in nature. In the marginal structure, this theory could never agree
with any very sensible deviation in the directions of the superficial curves of structure
from parallelism with the sides of a canal-shaped glacier. The attempt to correct this
defect by means of what has been called the Ripple Theory, will not now, I imagine, be
maintained by any glacialist. The constant existence of the veined structure under
great pressure, and its comparative absence where such pressure cannot exist, are left by
this theory without satisfactory explanation. It fails altogether to assign any direct
cause for the great development of the longitudinal structure along the central moraine
of compound glaciers like the Aar; for along the axes of such glaciers there cannot
possibly be any differential motion which could produce it. The only structure which
could there exist must be a transmitted structure.

But the most conclusive objection to the differential theoryis to be found, as I believe,
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in its total inability to account for the highly developed structural surfaces, their nearly
vertical positions, and approximate perpendicularity to the axis of the glacier, at all
points not far from its surface, and near to the bottom of an ice-fall (art. 56). It appears
to me inconceivable that any physical or mechanical effect (such as the lamination in
question) really and primarily due to the difference of motion of contiguous particles
should not manifest itself, if seen at all, in those directions in which the actual difference
of motion is greatest. Assuming the truth of this conclusion, the structural surfaces
must necessarily be such as above represented (art. 56). The investigation of the forms
and positions of these surfaces depends only on the recognized motion of the glacier, and
geometrical reasoning in which there can be no ambiguity. Now superficial curves of
structure at the bottom of an ice-fall, as thus theoretically determined, are extremely
elongated loops (art. 56); whereas it is one of the best-established of glacial phenomena
that the actual superficial lines of structure at the foot of an ice-fall are nearly straight
and perpendicular to the axis of the glacier. I maintain, therefore, that it is altogether
impossible that the differential theory can be true, unless the expression ¢ differential
motion ” has a very different meaning from any which I have. been able to attribute
to it*. On the contrary, the pressure theory, so far as it asserts the perpendicularity
of the structural surfaces to the lines of maximum internal pressure, appears to be in
accordance with all the observations which have yet been made on the subject.

SectioN VI.—On the Intensity of the Forces employed in dislocating and
crushing the masss of o Glacier.

60. We have seen that, according to the Pressure Theory, when a glacier is brought
into a constraint which it can no longer resist, its structure, or the continuity of its mass,
must be destroyed in one of the three ways already specified (art. 28). It would seem
probable that this is frequently effected by the crushing of the mass, the structure being
immediately restored by regelation. But here arises the question, Whence do the
internal pressures and tensions derive sufficient intensity to produce these crushing
effects? The enormous weight of the mass of a glacier at once presents itself as the
cause of the required intensity. But suppose, after the glacier has been broken and
crushed, it should be instantaneously restored to perfect continuity of crystalline struc-
ture under the pressure to which, in any part, it may at the moment be subjected;
why should the pressure, apparently the same as that under which it had, the instant
before, regained its crystalline structure, again destroy the continuity of that structure ?
The highest mountain does not crush the strata which form its base. Again, the super-
incumbent weight can only produce any great effect at depths sufficiently great, whereas
the effects of the internal pressures and tensions are exhibited in the most superficial

* With respect to Principal ForBEs’s conclusion, that a nearly horizontal force at the bottom of an ice-
fall will produce a differential motion in nearly a vertical direction, I can only say that it appears to me so
obviously opposed to the simplest conception of the action of such a force, as to be entirely inadmissible.
It is unquestionably opposed to all accurate mechanical investigation on the subject (art. 53).
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portions of the glacier, where the superincumbent weight can have no very sensible
influence. These questions may be partly answered by a careful consideration of the
‘theoretical explanations which have been given in the preceding pages; but for their
complete answer they require, I conceive, the recognition of a kind of motion which has
been till recently so entirely neglected. I allude to the motion by which a glacier slides
over the bed on which it reposes (Sect. IL art. 7). T shall shortly proceed to explain
the influence of this motion on the intensities of the internal pressures and tensions.

Principal ForBEs was struck with this difficulty respecting the adequacy of the internal
forces to produce the erushing effects ascribed to them, and the consequent mobility of
the component particles infer se, though, regarding ice as viscous, the difficulty may
naturally be supposed to have appeared less to him than if he had regarded it as a solid
substance. Ile puts the difficulty in the following form *:—* Were a glacier composed of
a solid crystalline cake, fitted or moulded to the mountain bed which it occupies like a
lake tranquilly frozen, it would seem impossible to admit such a flexibility or yielding
of parts as should permit any comparison to a fluid or semifluid body transmitting
pressure horizontally, and whose parts might change their mutual position, so that one
part should be pushed out whilst another remained behind.” The difficulty as thus
stated is equivalent to that above mentioned. Principal ForBES meets it as follows :—
“ But we know in point of fact that a glacier is a body very differently constituted. It
is elearly proved by the experiments of Aeassiz and others, that a glacier is not a mass
of ice, but of ice and water, the latter percolating freely through the crevices of the
former to all depths of the glacier; and as it is a matter of ocular demonstration that
these crevices, though very minute, communicate freely with one another to great
distances, the water with which they are filled communicates force also to great distances,
and exercises a tremendous hydrostatic pressure to move onwards, in the direction in
which gravity urges it, the vast porous crackling mass of seemingly rigid ice in which it
is, as it were, bound up.

“ Now the water in the crevices does not constitute the glacier, but only the principal
vehicle of the force which acts on it; and the slow irresistible energy with which the icy
mass moves onwards from hour to hour with a continuous march, bespeaks of itself a
fluid pressure. But if the ice were not in some degree ductile or plastic, this pressure
could never produce any, the least, forward motion of the mass. The pressures on the
capillaries of the glacier can only tend to separate one particle from another, and thus
produce tensions and compressions, within the body of the glacier itself, which yields,
owing to its slightly ductile nature, in the direction of least resistance, retaining its con-
tinuity, or recovering it by reattachment after its parts have suffered a bruise, according
to the violence of the action to which it has been exposed.” The author again remarks
(p. 167), “If it were not for the capillarity of the ducts, it is plain that no effective
hydrostatic pressure could be developed at all; the flow being equal to the supply, no
part of the vis vive would be expended in producing internal pressures.”

*# Occasional Papers, p. 165. See also a memoir in the Transactions of the Royal Society for 1846, Part ITI.



732 MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS.

61. The author of the preceding extracts would appear, I think, to have somewhat
mistaken the nature of the problem to be solved. He asserts that if a glacier were
traversed by a great number of small tubes or ducts filled with water, an enormous hydro-
static pressure would be the consequence. Now it is absolutely necessary for me to
examine strictly the correctness of this conclusion; for, if it be true, it would be useless
to seek for any cause which should give efficiency to the internal pressures, besides the
hydrostatic pressure to which it is here attributed. I shall show, however, that this
conclusion is not correct, and that the efficiency of the dislocating forces is derived, as
above intimated, from the sliding movement of the glacier. The existence of the above
assumed capillary ducts, as pervading the more compact parts of a glacial mass, appears
to be rendered doubtful by the experiments of Professor HuxLEY *, though the observa-
tions of M. Acassiz undoubtedly prove their existence in certain superficial portions of
the glacier of the Aar. But waiving any doubt of this kind, let us suppose the interior
of a glacier completely pervaded by these tubes or ducts, extremely small, but sufficient
to allow fluid pressure to be communicated freely through them, as Principal ForBus
has assumed. When the supply at the upper surface of the mass is regular, the motion
of the fluid will become steady; and such I shall suppose it to be in the typical case I
propose to analyse. 'We may first confine our attention to a single tube. Suppose the
area () of its transverse section at any point P to be variable, but always very small,
and ds to denote the length of a small element of the tube; then will «ds be the volume
of the element, and, if the density of the water be denoted by unity, it will also repre-
sent the mass of the water in the element 3s of the tube. Let the velocity at P, any
point in the tube, be v, which I shall assume to be the same for each particle in the sec-
tion (w). The motion will be retarded by the friction of the sides of the tube; let fads
be the retarding force on the element at P. Also let p be the fluid pressure at P; and
let the coordinates @, 7, z of that point be taken as heretofore; then will z be very
nearly vertical, and we shall have, resolving gravity in the direction of the tube,

2
wB_p:g.wBs.%—f.wBs—-flt—: . @8,
or d%s
Op=gdz—f 05— 7= 8s;
or, since the motion, by hypothesis, is steady,

d%s dv
W:’vz'sa

p+C=gz-—:/j"ds—%v”.

Let p,, 2,, s, and v, be the values of p, z, s, and v at the point where the tube meets
the surface of the mass. Then

p:p,+g(z—zl)—[ fls—3v—v), . . . . . . 1)
where p, is the atmospheric pressure.
* See Dr. Tyvpary’s ¢ Glaciers of the Alps.

and therefore we have
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Also, since the same quantity of the fluid must pass through each transverse section
of the tube in the same time, we must have
Vo ="0,0,,
and therefore
;_(,vz_,vz)_:vf 1_?.? .
2 179 w?

1

Let us interpret the above equation in different cases. We may first suppose the
absence of all friction as a retarding force. 'We shall then have

2 2
p=px+y(z—zl)—%(1—§¢);

and if the section () of the tube do not contract so rapidly as to impede the motion of
the water, the velocity acquired at the depth z will equal that of a body projected with
.velocity v,, and falling freely by the action of gravity through the space z—z, We
shall therefore have

(0’ —v)=g(2—2),
and therefore p=p, the atmospheric pressure, as if the tube were occupied by air.
The least value of & for any value of z in this case will be given by

.v?
2 "1
w.—z—;éwf

2
=2!7;_1:;wa

If w satisfy this condition for all values of z, the column of fluid will just fill the tube
without its motion being impeded, while the pressure on the tube, as just shown, will
be the atmospheric pressure p,. But suppose » to decrease, below a given section (Q),
more rapidly as a function of z than is implied in the above equation. The motion of
the fluid above the section Q would manifestly be retarded, and the retardation could
only be due to the upward fluid pressure at Q being greater than the atmospheric pres-
sure p, at the top of the tube. In like manner the increased downward fluid pressure
at Q would accelerate the motion of the fluid immediately below that section. Any
number of similar variations of , with consequent variations of velocity and fluid pres-
sure, might take place, subject to the above condition that the tube shall always be full.
The fluid pressure at any point eannot be less, but may be greater than p,.

In this reasoning the tube is supposed to be independent of any other; but now
suppose it to be confluent with a second and similar tube. At the point of junction we
must have the condition that the pressures in the two tubes must be equal. This con-
dition will be always satisfied, at whatever points in the surface of the mass the tubes
may originate, provided each tube be such that the fluid pressure in it (as in the first
case above explained) shall be equal at every point to the atmospheric pressure p,. In
such case water might pass from the upper surface through the mass, along any number
of smooth tubes like those above described and communicating freely with each other.

MDCCCLXIL 9 H
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The pressure in any tube would cause no reflux of the water, or other disturbance in a
confluent one, because the pressures in them would be equal ; but it must be carefully
observed that there would, in this case, be no internal fluid pressure greater than that
of the atmosphere, and therefore none capable of producing any effect in expanding
the general mass, and urging it onwards. But if, on the contrary (as in the second case
above explained), the tube be such that the pressure in each tube considered separately
should be greater than p,, the condition of an equality of pressure at the point of con-
fluence of any two tubes would not be generally satisfied, and the whole motion would
be interfered with. If the pressure p in any number of tubes became great, it would
manifestly produce a reflux in any confluent tube in which the pressure was smaller, and
a consequent outpouring of water from every pore and crevice on the surface of the
lower regions of a glacier. Such, in fact, must necessarily be the case wherever there
is an internal fluid pressure much exceeding that of the atmosphere, and where all parts
of the mass are permeated by ducts of any kind through which water can flow out of
the mass with little impediment. -

Hence it appears that if the internal ducts were such as not to impede the currents
passing through them by means of friction, or any kind of capillarity, there might indeed
be large internal pressures, but they would necessarily be accompanied by overflowings
from the superficial pores and crevices in many parts of a glacier. But such a pheno-
menon would be entirely opposed to all observation; and it is this which constitutes the
proof that there can be no great fluid pressure in the interior of a glacier due to water
contained within it in tubes which exert no sensible retarding effect by friction on the
water running through them. This conclusion agrees with that expressed by Principal
ForsEs in the last of the preceding extracts; but the reason assigned is very different.
The absence of great fluid pressure within the glacier in such case is not due to the
absence of capillarity, but to the particular condition of its ducts and crevices being open
in every part of the bounding surface of the mass. There can be no expenditure of vis
vive in producing pressure on a smooth surface, as is well known, though such pressure
must necessarily be produced in the case before us, as in all cases of constrained motion
when the constraint is produced by the action of such surfaces. The fact of no vis vive
being lost does not imply that no internal pressure would be produced.

62. But let us now turn to the far more important case in which the passage of the
water through the small ducts of any mass, as that of a glacier, is impeded by the
friction of the sides of the ducts. It follows, as shown in the preceding explanation,
that, since in actual cases there is no overflowing of water from the pores and crevices,
here assumed to pervade one part of the mass as well as another, the fluid pressure in
all confluent ducts at the point of confluence must be the same, and, therefore, inde-
pendent of the height above that point at which each duct may meet the external
surface of the glacier. This pressure, when the surface is exposed to the atmosphere,
can be only the atmospheric pressure. Hence it follows in this case, as in the previous
one, that there can be no internal fluid pressure greater than that of the surrounding
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atmosphere, and such, therefore, as can exert any influence in expanding the mass, and
promoting its onward motion. It will act on the interior of the mass in directions
normal to the tubes. But there is another force also, friction, acting on the mass of the
glacier in this case, in directions fangential to the tubes, the magnitude of which requires
to be considered. It retards the motion of the fluid, acting equally on the fluid and
on the sides of the tubes containing it in opposite directions. Now in the case before
us, p=p,, the atmospheric pressure, and, therefore, by equation (1.), art. 61,

S fls=glz—2)—}'—4);

and differentiating,

dz dv?
f=95—% %
and
8 8 dz 1 31 o2
J:fmds‘/o.gwdsds 3 T wds, (2.)

where f tfwds is the whole retarding force of friction in any one of the tubes whose
0

length =s, (art. 61), and is therefore the amount of friction produced by the water on
the sides of the whole tube.
To find the value of the last term in equation (2.), we have (the duct being always

full)
V=V, . . . v e e e e e .. (3)

where o, is the value of » when s=0 and v=v,. Therefore

2
vzz'”lw?
w?’
d?_ 200} o
ds w3 ds’
dv? 2’!)?0)?
2 b= — dw
ds w? ’

and
s dov? 1 1
S Tas=20a ()

Now we may venture to assert that when water descends through exceedingly minute
ducts in the manner here supposed, the velocity with which it will permeate the lower
portions of the mass will be much the same as that with which it will pass through the
upper portion. Assuming this, we shall have by equation (8.) w,=a,, and the value of
the above definite integral will =0. Hence, by equation (2.), we have

Sy _ 8 dz .

‘/o.fwds_/o‘ g.wds.% :
gwds is the weight of an element of the water in the tube, and gwds.%j- is a force less
than that weight. Consequently the definite integral on the right-hand side of the last

5u2
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equation expresses a force less than the weight of the whole fluid contained in the tube;
and if we call this last weight W,, that equation shows that the entire effect of the
friction, estimated in the tangential direction in which it acts at each point of the tube,

is less than 'W,.
Again, let X, be the part of the friction on any element of the tube, resolved parallel

to the axis of #; then

0K, =fuds. 2,
5 dz & dz de,
Xl-—‘/‘)‘fwds.%?/o'gwds.g-%,

51 dy 5 dz d
Y,:jfwds.%‘:‘/‘: gwds.ﬁ- d-_?:,

5 ] s, 2
Z, =£fwds.g_j=£ gads. (Z—j) .
Since %;E, %, and %—j— are each less than unity, it follows that X,, Y,, and Z, are each less
than 'W,; and if, taking all the tubes,
X=X,+X,+&c, Y=Y,+Y,+&e, Z=Z7Z,+Z,+&c, W=W,+W,+&ec.,
we shall have X, Y, and Z each less than W, the weight of water in the whole mass of
the glacier.

The internal pressure Z will tend to elevate the upper surface of the glacier; the
pressure Y will be equilibrated by the pressures on the opposite flanking walls of the
glacial valley. To interpret the meaning of X, we may suppose the vertical section of
the glacier near its origin to be immoveable; then will the pressure X tend to urge
onwards the whole mass in the direction of the containing valley, where there is no
barrier to oppose its action.

To form a conception of the magnitudes of the pressures X, Y, Z, we may remark that
the water in our supposed tubes must almost necessarily descend through the mass

similarly, we have

in approximately vertical directions. Admitting this supposition, %Wﬂl nearly equal

unity, and Z, will nearly equal f stqwols, or nearly the weight of the fluid contained in
0

the single tube. Consequently the whole vertical resolved part of the friction=Z=
approximately the whole weight of the fluid contained in the glacier. Y will be equal

only to a small portion of W, because %, in the case we have taken, will be very small ;

and X will be also very small, because % will be so. And thus it follows that the whole

internal pressure, arising from the friction on the sides of the small ducts through which
the water descends, and tending to urge the glacier forwards, cannot exceed a small
fraction of the weight of the water descending through its pores, and this latter weight
again must doubtless be an exceedingly small fraction of the weight of the glacier.
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63. It appears, then, from these explanations, that there will be at every point (P)
of every duct, two internal forces, the fluid pressure p acting normally, and the friction
acting tangentially at that point on the sides of the tube. But assuming these small
ducts to pervade the superficial as well as the inner portions of the mass, the fluid
pressure p can never much exceed the atmospheric pressure, which, acting externally,
will very nearly counterbalance it; and this will be true whether the motion of the
water in the ducts be impeded by friction or not. Also the whole resolved part of fric-
tion acting on the ducts, in the direction of the general motion of the mass, must be
very small compared with the weight of the whole percolating fluid. Neither of these
forces, therefore, can have any sensible influence in augmenting the onward motion of
a glacier, compared with other forces which, as I shall shortly explain, tend to produce
that effect.

64. In the preceding explanations I have spoken of the retardation of the motion
of a fluid in small ducts, as due to friction rather than capillary action. Capillarity,
when it exhibits itself in the form under which it is more usually contemplated, acts in
a manner totally different to that in which friction acts. We know that a column of
water, or of other fluids, of a certain length may be supported in a vertical tube of
sufficiently small bore, by the attractions between the particles of the fluid, and the
attraction between the fluid and the tube. These attractions produce the capillarity of
the tube. If, however, the tube be perfectly full, whether the fluid be at rest or in
motion, its capillary action on the fluid will counteract itself, and will produce no effect
sensible to observation. It is only when the tube is partially empty that a part of the
capillary action on the contained fluid is uncompensated, and exhibits itself in the
column of fluid which it is capable of supporting. These partially empty tubes cannot
properly belong to a system of tubes, like those of a glacier, which serve as ducts through
which the water is constantly running, and which must therefore be constantly full; at
all events, the number of tubes exhibiting the effect of capillarity as above described
must probably be extremely rare in a system of ducts like those of a glacier. Supposing
such tubes, however, to exist, we proceed to explain their effect in producing internal
pressure.

Let AETF B be a section of the capillary tube made by a plane Fig. 18.
through its axis, the tube being considered cylindrical and vertical. 4 B
Let ED F be the level of the surface of the external fluid, which \ /
we may suppose to be water, and into which the lower end of the ¢|
tube is placed. Also let A CB be a section, by the above plane, Py b
of the surface of the water maintained in the tube by capillary

i} D 0

action. Our object is to ascertain whether this water will produce
any pressure on the sides of the tube tending to thrust them outwards, and thus pro-
duce an expansion of a solid mass in which any number of such capillary tubes might
exist.

For this purpose we must consider how the column of water in the tube is supported.
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Now, manifestly, the atmospheric pressure, acting equally in all directions, can contri-
bute nothing to this effect; nor can there be an upward pressure on the base EF of the
raised column of water; for the pressure at any point of that base can only be equal to
that at any point in the surface of the external fluid, which, neglecting the pressure of
the atmosphere (as we may do from what has just been stated), will be zero. Again,
the resultant attraction of the tube on any single particle of the fluid must be in a
direction perpendicular to the surface of the tube, and must therefore be horizontal.
Consequently it can produce directly no force on the particle or on the whole mass of
the fluid column in a vertical direction. The direct effect of gravity, on the contrary,
is to drag the whole column of water downwards, and the leading point in the problem
of capillary action is to explain how this tendency of gravity is counteracted.

In a question like this, which is merely subsidiary to the general problem treated on
in this paper, it must suffice that I quote those results which are familiar to every one
acquainted with the ordinary investigations respecting capillary action. Now it is
shown by such investigations that the fluid column A EF B is supported (so far asregards
any vertical action upon it) in the same manner as ¢f it were suspended freely from an
infinitely thin and perfectly flexible membrane accurately coinciding with the actual
surface A C B, the particles of the fluid being supposed to adhere to the membrane and
to each other by virtue of the cohesion or attraction between them, without which, in
fact, the ordinary phenomena of capillarity could not exist.

If the column of water in the tube were entirely supported by an upward pressure
on its base EF, then would gravity produce a pressure on any horizontal section Q M P,
the whole amount of which would be the weight of the portion of the column above it,
and there would be a corresponding pressure on the inner surface of the tube at P and
Q, tending to push it outwards; but if the column were supported, as above supposed,
at its upper surface, gravity would produce a fension at the horizontal plane Q M P, the
whole amount of which would be equal to the weight of the fluid between QP and the
base EF. Thus the whole column would be in a state of longitudinal tension, and
therefore also, by the fundamental property of fluids, in a state of horizontal tension—
i. e. the action between the fluid and the inner surface of the solid tube, instead of being
a pressure, must be a fension, supported by the mutual attraction between the particles
of the solid and those of the fluid, supposing the contact between them not to be broken.
This must be the direct effect of gravity in the actual case; and so far, therefore, its
tendency is to contract and not to enlarge the diameter of the tube.

There are other causes, however, by which action may be produced between the tube
and the contained fluid. First, a pressure will necessarily arise from the mutual attrac-
tion between the tube and the fluid; but here we have the action of the fluid on the
tube, and the reaction of the tube on the fluid, the one tending to pull the surface of
the tube inwards, and the other to push it outwards. The action and reaction thus
counteract each other, and the pressure thus produced can manifestly have no tendency
either to expand or contract the tube.
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Again, in any actual case of a fluid sustained in a capillary tube, the inner surface of
the tube will not generally be a surface of free equilibrium like the upper surface of the
fluid itself; and therefore there must necessarily be some action between the tube and
fluid, should they remain in contact, even if there were no attraction, like that just con-
sidered, between them. Now it can be shown, according to the fundamental principles
on which the theory of capillarity is founded, that in all cases resembling the one we
have been considering, the action in question must be equivalent to a fension on the
inner surface of the tube. Hence this action, as well as that due to gravity, produces
forces on the tube which tend to contract and not to expand it, while the mutual attrac-
tions of the tube and fluid produce directly neither the one tendency nor the other.
Consequently the general tendency of capillary action in the interior of a glacier will
be to contract and not to expand its dimensions. The contrary notion has probably
arisen from the idea that gravity would produce a pressure on the interior surface of a
capillary tube like that which it produces in a tube of larger dimensions. The fluid
which may exist in these capillary tubes will, of course, add its own weight to that of
the glacier, an addition probably too insignificant to produce the slightest sensible
influence. ’

65. There is something so plausible at first sight in the idea of a great internal fluid
pressure within a glacier, due to the water percolating through it, or suspended within it
by capillarity, while additional weight has been given to this notion by the advocacy of
the author of the Viscous Theory, that I have thought it essential to enter into more
details on the subject than I should otherwise have deemed necessary, in order to
prove the fallacy of the conclusions which have been deduced from erroneous views
respecting it.

I now proceed to explain how the intensity of the internal forces is increased by the
sliding movement of the glacier.

66. Effect of the Sliding of a Glacier on the Internal Pressures and Tensions.—It has
frequently been objected to the sliding of a glacier, that the inequalities along the sides
of the containing valley would effectually prevent such motion. This objection, how-
ever, will be entirely obviated, if we eliminate the uncertain and irregular opposing
forces arising from local lateral obstacles, by substituting for the sides of the glacial
valley two imaginary vertical planes near and approximately parallel to them, so that
we shall thus have the tangential action of ice along these planes as the retarding force
on the general mass of the glacier, instead of the action of the walls of the valley. The
greatest magnitude of this retarding force must be equal to the greatest tangential cohe-
sive power of the ice. 'This is, in fact, the greatest force which the walls, however irre-
gular, could possibly exercise in opposing the sliding past them of the general mass of
the glacier. To simplify our problem as much as possible, I shall also first suppose the
glacier of uniform width and thickness, and the inclination of its bed to be likewise
uniform. We may then consider A and B each =0. I shall also suppose C=0, and
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E=0, as well as D=0. We shall thus have (art. 29 (1.)),
]71=F, P2=—F>
tan 2e=co .

F will vanish along the axis of the glacier, as we have seen, and will have its greatest
value along the imaginary vertical planes by which we here consider the moving mass
as effectively bounded along its lateral margins. Let its value along these planes be F,.
If we suppose, as we may in this approximation, that every'particle in the same vertical
line moves with the same velocity, F, will be the same for every point of the bounding
lateral planes. Moreover, let the tangential action exercised by the bed of the glacier
on its lower surface be denoted by f;. Let us now conceive the mass to be placed in a
position of no constraint. It will immediately assume a position of constraint by virtue
of its small extensibility, and, provided the internal forces p,, p,, and ¥ are insufficient
to dislocate the mass along the lateral vertical planes (where their magnitudes will be
the greatest), the glacier will be held at rest in its state of constraint by the external
forces acting upon it. Now F, and f, being referred to a unit of surface, if @, b, ¢ be
the length, breadth, and depth of the glacier, we shall have

The tangential force on each flank = Fac,
The tangential force on the bottom = f,ab,
and these must be in equilibrium with the weight of the mass on the plane whose incli-
nation is +. Hence if » be the weight of a unit of volume of glacial ice, we shall have
2F ac+-fiab=wabe sin 4,

Fl=%{wb sini—f, %’}
Suppose F to denote the tangential cohesive power of the mass. Then, if
F,=F,

the glacier will be just on the point of dislocation; and if F, exceed F in the smallest
degree, the mass will be dislocated along the lateral planes and move onwards.

‘We have shown (art. 8) that the effect of f, o hold the mass of the glacier at rest is
extremely small; consequently it may be neglected in the above equation, and we shall
then have

and

F,=1labsins.

If the lower surface of the glacier were firmly frozen to its bed, we might have f,=F,,

and therefore
wbsin ¢ .

24!

F=

¢ is properly the depth of the glacier along its flanks, so that g— may be large.
Hence we see that I, may become much greater when f; is very small, than if it were
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nearly =F,. Consequently F, will be much more likely to attain the magnitude ¥, suffi-
cient to dislocate the mass, if the glacier slide over its bed as described in art. 8, than if it
were attached to its bed so as not to slide at all, and its whole motion should be that due
to the molecular mobility of its particles alone. :

The above equation expresses the condition of the mass being on the point of disloca-
tion in terms involving the fangential cohesion; it will be easy to express it in terms of
the normal cohesion.  Generally, instead of the forces A, B, F acting on any element, we
may substitute the forces p,, p, (art. 29), acting in their proper directions as determined
by the values of «. Let fig. 19 represent one side of the glacier with the lateral
plane BR; then, since at any point (R) Tig. 19.
in that plane p,=F, p,=—F,, and
tan 20 = oo, we may substitute for F,
acting tangentially along R B, two other g ¢ B
forces, viz. a tension =F, along R M, and W\"/W\""
a pressure=F, along N R, both directions ‘ !
making angles of 45° with BR. Conse-
quently an equal tension and pressure similarly applied at each point of the lateral
vertical planes, would by hypothesis balance the tendency of the mass to descend in the
direction BR. Now F, acting at an angle § on BR will produce a force =F, cos§ on a
unit of surface of BR. Therefore the tension F, acting along R M will produce a force

on the same unit, of which the resolved part along R B will
' =T, cos 45°.cos 45°,
F,

2
Similarly, the pressure F, along N R will produce a force the resolved part of which along

Y

R B will also =—1-;—1. These together =F,, and the whole supporting force on the two

lateral vertical planes will =2F,ac, F, being now the measure of a pressure or a tension
acting normally on a unit of surface. Therefore
2F ac=wabc sin s,

and

b .
Fi=w Zsin s

Consequently a glacier like that we have been considering, will necessarily be dislocated
by its own weight resolved along the plane of its bed, if its normal cohesive power be
less than the weight of a column of glacial ice whose transverse section is unity, and
whose length = semiwidth of the glacier multiplied by the sine of the inclination of
its bed to the horizon. If the glacier were a mile wide and its inclination about 5°, it
would be necessary, in order that it should not be dislocated, that its cohesive power
should be such that a vertical cylindrical column of glacial ice about 200 feet long
should be capable of supporting itself when suspended by its upper extremity. This
would be the measure of the greatest tension p,(=F,) at any point along either of the
MDCCCLXIL. 51



742 MR. HOPKINS ON THE THEORY OF THE MOTION OF GLACIERS.

Jateral vertical planes, which could be produced under our assumed conditions. If the
cohesion were less than this, the mass would necessarily be ruptured in some way or
other in its marginal regions. The above, however, is only the lowest limit to which
the force F, would attain. For let @ represent the length of a given portion only of a
glacier, such that at the lower transverse vertical section of that portion, the longitudinal
tension shall be greater than at the higher bounding transverse section, instead of being
equal to it as above supposed. It is manifest that F, will be increased along the lateral
vertical planes of that portion of the glacier. Such will also be the case if the same
portion of the glacier be acted on by a longitudinal pressure on its higher transverse
bounding section, greater than that on its lower one. There would generally, in such
cases, be a much greater effort to overcome the cohesion (F) of the mass along the
lateral vertical planes than in the case previously considered. If the valley of the glacier
contract somewhat rapidly, the longitudinal pressure may be enormously increased on a
given portion of the glacier by the action of the mass behind it, and this increased action
will manifestly depend very much on the facility with which the mass behind slides over
its bed.

It may be well to take another numerical example in which the conditions are similar
to those of the example given above. Let the glacier be something less than half a mile
broad, and its inclination about 8°. Then it appears, from the above expression for F,,
that dislocation would not take place, provided the cohesion of the mass were not less
than the weight of a column of ice of about 60 feet long, instead of 200 as in the former
example. This supposes the mass to slide freely over its bed, and the longitudinal
pressure or tension to be the same behind as before; but if we suppose the mass to
adhere to its bed, that adherence will help the tangential action along the lateral vertical
planes to support the mass. Consequently the force F, called into play might be much
less than the weight of a column 60 feet long, and might not be sufficient to overcome
the cohesion F, in which case the motion of the mass would be arrested. This conclu-
sion would be strictly applicable only to our fypical glacier, but is sufficient to explain
how, in the actual case of a glacier, the facility of its sliding may increase its power to
overcome the obstacles to its motion by the fracturing of its mass.

I have chosen the simplest cases for the purpose of more easily explaining the manner
in which the sliding of a glacier increases the dislocating power of the forces acting upon
it. In the more complicated cases, in which C and E are taken into account at consider-
able depths, we shall obtain greater values of the ‘tearing and crushing forces p, and p,.
It is the latter which will be principally increased at greater depths. Still it must not
be supposed that the mere increase of weight can explain the apparent difficulty already
suggested (art. 60), viz., Why, when the mass has been crushed and then immediately
regealed under the existing conditions at any proposed point, it should again be crushed
at the same point. This second crushing does not, in fact, take place under the same
pressure as that under which the regelation took place. This latter process occurs when
the pressure depending on the angular distortion of the element, or on the force F, has
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been destroyed by the previous crushing; and then the angular distortion, the force F,
and the increase of the maximum pressure are reproduced, and the mass is crushed again.
‘We thus understand how the alternate processes of crushing and regelation must be
repeated when the mass is in motion, though the weight alone of the mass, however
great, might not, and probably would not, if unaided by the distortion arising from the
motion, be sufficient to crush any even the lowest portions of the glacier, any more than
the superincumbent weight of a mountain crushes the lower portion of the strata which
compose it. 'We have seen how this power of distortion is increased by the sliding of
the glacier.

It is thus that I conceive the process of regelation in glaciers to be intimately united
with their uniform sliding movement. Both these properties are proved to belong to ice
at the same particular temperature (that of freezing), by clear and conclusive experi-
ments, and form, as I have endeavoured to show, the foundation of a theory which
explains all the principal observed phenomena in the motion of glaciers, without assign-
ing to ice any property, like viscosity accurately defined, which it cannot be experiment-
ally proved to possess. In the introduction to this paper I have shown that the pro-
perty of regelation is totally distinct from that of plasticity or viscosity, if by either of
those terms it is intended to designate a determinate property of bodies distinct from
that of solidity. All the experimental elucidations which have been given of the
Viscous Theory have been drawn from bodies, such as moist plaster of Paris, tar, treacle,
unconsolidated lava, &c., all of which may with strict propriety be termed plastic or
viscous ; but I maintain that ice possesses no property which at all assimilates it to those
substances. I have shown that the apparent plasticity of ice, as manifested in the com-
pressions of glaciers under great pressure in the course of their motion, is no determinate
property of ice at all, but a consequence of its fracture and regelation. Still, differing as
I do from the author of the Viscous Theory, I consider the scientific world largely
indebted to him for his unwearied researches respecting glacial phenomena, for the large
amount of general and detailed knowledge which he has communicated to us, and the
interest with which he has helped to invest the subject. Moreover, though he may not
have been the first to observe that fundamental character in the motion of a glacier
which consists in the more rapid motion of its axial portions, he was the first glacialist
whose mind was thoroughly imbued with the necessity of recognizing the influence of
molecular mobility in the mass of a glacier on its general onward motion. In like
manner, though not absolutely the first to observe that interesting and characteristic
structure of glacial ice, the veined structure, he was doubtless the first to recognize the
existence of law in that structure, and its consequent importance as indicating the opera-
tion of causes physical or mechanical, or both, with which we were entirely unacquainted.
In all this, Principal ForBEs has contributed largely to the sound progress of glacial
science, and his labours must always be highly appreciated. Beyond this boundary, he
stepped into the region of speculative theory; and it appears to me, as may be seen from
much I have said in this paper, that he did so without any distinct definition of the
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fundamental physical principle on which his Viscous Theory rested, and without the expe-
rimental verification which it demanded, and, moreover, without the guidance of those
more refined and exact mechanical researches without which I am sure we can see our
way but dimly through the more complicated of those problems which glacial theory
presents to us. Ience it is that I have been led to dissent from most of his speculative
views. That dissent has been unreservedly expressed in this paper, and therefore it is
that, in concluding it, I would bear testimony to what I consider the great and legiti-
mate claims which the author of the Viscous Theory (however we may differ from the
theory itself) has established to be regarded as one of the leading promoters of glacial
science.

After the greater part of this paper was written, a very interesting memoir by the
Master of the Mint, “ On Liquid Diffusion applied to Analysis,” was brought under my
notice. He there speaks of the “ colloidal condition of matter ” (of which gelatine seems
to afford the type) as opposed to the *crystalloidal condition.” Ie remarks (Philoso-
phical Transactions, Vol. 161, Part I. 1861), «Ice itself presents colloidal properties at
or near its melting-point, paradoxical though the statement may appear.” Again, “ Ice,
although exhibiting none of the viscous softness of pitch, has the elasticity and tendency
to rend seen in colloids.” It further appears to be of the class of adhesive colloids.
The redintegration (regelation of FARADAY) of masses of melting ice when placed in
contact, has much of a colloid character. A colloidal view of the plastlclty of ice
demonstrated in the glacier movements will readily develope itself.”

These passages were written without any direct reference to glacial questions; but it
occurred to me that a glacialist might possibly put constructions on them unfavourable
to the views I have expressed respecting the solidity of ice, and the absence in that sub-
stance of any property which could, according to my own definition of the term, be called
plastic. Consequently I wrote to the author requesting him to give me some further
elucidation of his views on one or two points bearing on my own definitions and explana-
tions. I proposed to him the following questions, to which he kindly gave me the
subjoined clear and explicit replies.

(1) “Is the tendency to a colloidal character in ice, as opposed to a vitreous, crystal-
line brittle structure, sufficient to interfere materially with the restitution described *, by
giving the ice a greater degree of plasticity?!” Mr. GRAHAM'S answer was, “I believe
not. A colloid, on the contrary, is often as nearly perfectly elastic as possible. Take
the gluey material used to form the roller by which ink is applied in book-printing, as
an illustration of the elasticity of a colloid, with the entire absence (apparently) of true
plasticity or viscosity.” :

(2) “Will the colloidal state of ice at temperature = zero (C.) materially modify the
modus operandi (assuming the ice to be solid), rendering it approximate to the process
which would take place supposing the mass to be plastic?” Mr. GraHAM replies,

* See art. 1.
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“ Quite the contrary. The only influence to be looked for from the colloidal state would
be greater elasticity—that is, the matter would be likely to yield more before rending or
breaking, supposing it to be colloidal, than if it were crystalline. Your mechanical con-
ception of the modus operandi in the fracture of a solid (not plastic) applies equally well
to a crystal or colloid. I go entirely with you up to that point.”

Mr. GRaHAM further remarks, “Colloidality is invoked chiefly with the view of account-
ing for the ready reunion, the redintegration as I have called it, of fragments of ice
brought into contact with each other. It is a very general (perhaps universal) character
of colloids to adhere and reunite when two masses are pressed together. In fact all our
adhesive substances, gum, glue, starch, &c., belong to the class of colloids. Even glass,
which is a colloid of fusion, shows the adhesive character, two sheets of polished plate
glass often adhering so thoroughly as to tear up each other’s surface when forcibly sepa-
rated. Another colloid adhesive like ice, is fused phosphoric acid— glacial’ phosphoric
acid as it is called, in prescience, one might imagine, of this discussion! No such adhe-
sive property is ever found in crystalline surfaces, so far as I am aware. It is qua colloid
that ice appears to be adhesive. The discovery of FARADAY’S, of the adhesive quality of
ice, is the fundamental fact of the glacier discussion. The name ‘regelation’ applied
to it may, however, be objected to, being quite speculative, and implying, as it appears
to do, that two pieces of ice come to be cemented together by the freezing of a film of
water between them, instead of simply adhering perfectly and uniting as two pieces of
plate glass might do. The great fact, however, remains, and the name is but a trivial
matter.” '

I also thought it right to inquire of Mr. GRAHAM the exact meaning he intended to
attach to the word * demonstrated ” in the last sentence of the above quotation from his
memoir. A glacialist might possibly, I thought, if so disposed, interpret it as meaning
“proved ” or “fully established.” In his answer Mr. GrAuAM says, “For ¢demon-
strated ’ I should have said ‘indicated’ as you suggest.” He also remarks, < You will,
I am certain, do good service in the glacier discussion by the precision you introduce
into the terminology of the subject*. I accept without reserve your definitions of plas-
ticity, &c. In the passage you quote from my paper, I had spoken of ice as plastic in a
more general sense, as plasticity is understood, I apprehend, by Professor ForsEst. A
solid was looked upon as plastic of which the form can be remodelled anyhow—by
fracture and reunion, as well as in consequence of viscosity.”

These views of the Master of the Mint are so explicitly and clearly expressed that
they need no comments on my part, beyond the expression of the high gratification I
derive from the coincidence of the opinions stated in his letter with those which have
been put forth in this memoir.

# 1 had communicated my definitions to Mr. GRAEAM.
+ This is what I termed quasi-plasticity, or apparent plasticity.



